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Abstract

This article investigates whether machine-learning (ML) methods, combined with
rich mixed-frequency datasets, can be useful in predicting current and future U.S. GDP
growth in real-time, and further seeks to answer how ML-based models can be useful,
by investigating the composition that constitutes the superior candidates. A set of
pseudo real-time mixed-frequency vintages are used in an out-of-sample evaluation ex-
ercise to compare the performance of over 70 specifications across 13 ML model classes,
alongside a comprehensive set of state-of-the-art econometric models and benchmarks.
The results demonstrate that ML approaches can generate more accurate nowcasts and
1-quarter-ahead forecasts compared to benchmarks. In terms of the components (i.e.,
information sets; linear vs non-linear methods; structured vs component-wise incorpora-
tion of predictor dynamics) that make the successful combination, the findings suggest
that there is a significant heterogeneity which depends on the machine learning method
employed. Overall, models that (1) use linear ML methods or methods based on linear
learners, (2) incorporate quarterly factors, and (3) exploit high-frequency predictors,
frequently appear among the specifications that consistently rank in the upper quantile
of the performance distribution. One of the ML methods that merits more attention
is the gradient boosting algorithm with a linear base procedure. When L2 boost is
estimated with the information set comprised solely of quarterly factors, it is consis-
tently found among the top performers both overall, and for nowcasting in particularly.
Moreover, among the linear ML specifications, bagged linear regressions are also found
to consistently rank in the top quartile of model performance, almost regardless of the
information set used and across error measures.
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1 Introduction

Many economic indicators describing various aspects of the economy, that are crucial for
guiding decision-making, are published with delay and often undergo multiple rounds of
revisions after their initial release. One notable example is the gross domestic product (GDP)
which is a summary measure of macroeconomic conditions and serves as a key indicator
closely monitored by policy institutions and private observers to inform public policy and
business decisions. In many countries, GDP is available only on a quarterly basis and is
subject to substantial delays. For instance, to illustrate the delay, in the United States,
the Bureau of Economic Analysis (BEA) releases three estimates for each quarterly GDP
figure, one around the end of each month following the close of the reference quarter. As a
result, economic and policy decisions must be made without knowing the current state of the
economy (i.e., the running quarter’s GDP value), and at the same time the most recent known
state is surrounded by uncertainty, as the GDP value for the previous quarter is typically
expected to be revised. Tools that monitor economic activity in real time that can capture
and accurately depict changes in rapidly evolving economic environments, are essential to
enable the effective and prompt reaction of policymakers. Such tools are even more critical
during periods of crisis, as they can allow the immediate response of monetary and fiscal
authorities, as well as that of private decision-makers, when reaction time is paramount. A
recent example that underlines the importance of developing robust monitoring tools is the
COVID-19 pandemic, during which monetary and fiscal authorities needed to take immediate
action to mitigate the economic fallout from the disruption caused by the lockdowns to the
economies around the globe.

Despite the remarkable progress and innovations in the time-series econometrics litera-
ture, the COVID-19 pandemic uncovered vulnerabilities in existing methodologies, present-
ing significant challenges for policy institutions. For instance, in September 2021, the New
York Fed suspended updates to its highly regarded real-time GDP nowcasting platform,
citing that "the uncertainty around the pandemic and the consequent volatility in the data
have posed a number of challenges to the model." Moreover, the exposed weaknesses were not
limited to GDP forecasting methodologies but extended to the forecasting of other critical
variables, such as inflation. In the fourth quarter of 2021, many central banks, international
institutions and private sector forecasters published projections that severely underestimated
headline inflation in their respective economies (see European Central Bank] 2022). The im-
plications of these shortcomings were enormous for central banks, which relied on inflation
forecasts to determine the timing for rising interest rates and stopping net bond purchases.

These systematic weaknesses underscore the need to re-evaluate current forecasting prac-



tises and further suggest the importance of supplementing models with high-frequency data,

potentially extending beyond traditional macroeconomic indicators.

1.1 Overview of the Machine Learning Literature

In recent years, machine learning (ML) methods have emerged as a promising alternative
to conventional econometric approaches, owing to their ability to effectively handle high-
dimensional datasets, even when predictors far exceed the number of observations, and to
capture complex nonlinear relationships. Advancements in computational power and devel-
opments in ML theory have encouraged researchers to revisit the potential of ML methods
as macroeconomic forecasting tools, with considerable success. In a seminal work assess-
ing multiple machine learning methodologies alongside traditional econometric benchmarks,
Medeiros et al.| (2021), showed that ML models, particularly random forests, systematically
improve US inflation forecasts in data-rich settings. Focusing on linear techniques, |Kotchoni
et al| (2019) showed that combining model averaging with various forms of regularization
can produce strong forecasts for a range of key macroeconomic indicators. Furthermore, ML
methods in conjunction with large datasets have also been used to predict monthly U.S.
stock returns. (Gu et al.| (2020), using over 900 covariates demonstrated that machine learn-
ing forecasts, especially those from deep neural networks and tree-based ensemble methods,
significantly outperform traditional benchmarks in an out-of-sample evaluation setting that
contained several thousands of U.S. listed stocks. Adopting a novel perspective, shifting
the focus away from identifying a single best-performing model, |Goulet Coulombe et al.
(2022) explore the underlying properties that drive the success of machine learning proce-
dures. Through a comprehensive meta-analysis based on an extensive pseudo-out-of-sample
forecasting horse race, the authors decompose ML models into their key characteristics (i.e.,
non-linearities, dimensionality reduction, hyperparameter optimization, loss function speci-
fication, and the richness of the information set), and examine how each of these features
influence predictive performance. Their findings suggest that employing (1) a nonlinear
function approximator, (2) principal components for dimensionality reduction, and (3) K-
fold cross-validation (CV) or the standard BIC to tune hyperparameters, all contribute to
improving the forecasting accuracy of macroeconomic targets. Employing a similar evalua-
tion framework, Goulet Coulombe et al.| (2021a) construct numerous information sets based
on different transformed versions of a large set of predictors and evaluate their marginal
contributions to forecast accuracy for several monthly macroeconomic targets. Their analy-
sis considers multiple linear and nonlinear ML techniques combined with the following data

transformations: levels, stationary-transformed data, principal components, as well as two



newly proposed methods that are used as means for compressing the information within
lag polynomials, namely moving average factors (MAF), and moving average rotations of
the input data (MARX) E] Their findings indicate that MAF, MARX and levels as well as
extracting common factors are all associated with lower RMSEs, particularly when paired
with the nonlinear nonparametric tree-ensemble algorithms.

Despite the recent surge in popularity, earlier studies had also explored the use of ma-
chine learning methods in macroeconomic forecasting. For example, Inoue and Kilian! (2008))
considered the application of bagging dynamic linear regressions in forecasting U.S. CPI
inflation. Using a monthly dataset of 30 real economic activity and financial series, they
compared bagging techniques with other ML methodologies, including LASSO, Bayesian re-
gression with a Gaussian prior, and the standard ridge estimator, demonstrating that ML
approaches can deliver substantial improvements in prediction accuracy over benchmarks.
Bai and Ngj| (2009)) proposed employing the linear least-squares boosting algorithm as a de-
vice for selecting the most relevant predictors for specific targets within the framework of
factor-augmented autoregressions. They demonstrated that boosting PCA-based factors,
derived from a monthly panel of 132 predictors, substantially improves forecasts of various
macroeconomic targets compared to standard diffusion index (DI) forecasts a la Stock and
Watson| (2002). |Groen and Kapetanios (2016]) studied the theoretical properties of Partial
Least Squares (PLS), Bayesian shrinkage regressions, and PCA-based factor regression mod-
els under a variety of different unobserved factor structures for the predictor variables, and
subsequently compared their out-of-sample performances using a panel of 105 monthly U.S.
macroeconomic series to forecast numerous key monthly economic indicators.

The majority of machine learning studies in the macroeconomic forecasting literature,
including the aforementioned ones, have focused on predicting monthly real and nominal
indicators, such as headline and core inflation, industrial production, (un)employment, and
the Federal funds rate, while largely overlooking GDP. A possible explanation for this gap
lies in the unique challenges associated with GDP nowcasting (and forecasting), which is
inherently a mixed-frequency data problem. Effective evaluation of data-rich methodolo-
gies typically requires hundreds of predictors, as using smaller datasets could obscure their

true potential, unfairly disadvantaging them compared to approaches that can accommodate

'MAF applies principal components to summarize the lags of each predictor, while MARX involves
forming sets of simple moving averages for each predictor
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fewer predictorsEH?] At the same time, real-time vintages of (rich) mixed-frequency datasets
containing large numbers of relevant predictors are often unavailable and difficult to com-
pile. These challenges, combined with the complexity of integrating predictors sampled at
varying frequencies into machine learning models, have likely contributed to the relative lack
of attention given to GDP in the machine learning forecasting literature. Nevertheless, the
popularity and success of machine learning (ML) algorithms in macroeconomic forecasting
have spurred researchers to extend standard ML methodologies to the mixed-frequency do-
main, aiming to exploit the predictive content of the readily available timely (high-frequency)
indicators. For instance, Babii et al. (2022)) introduce penalized MIDAS regressions lever-
aging the sparse-group LASSO (sg-LASSO) framework, originally proposed by [Simon et al.
(2013)). Their sg-LASSO-MIDAS adaptation effectively handles high-dimensional predictors
with varying frequencies, making it particularly suitable for nowcasting applications within
data-rich mixed-frequency settings that include large frequency mismatches. Similarly, [Hep-
enstrick and Marcellino| (2019)) build on the Three-Pass Regression Filter (3PRF) of [Kelly
and Pruitt| (2015) which is an extension of the PLS algorithm, rendering it applicable to
large and irregular information sets with mixed-frequencies and ragged-edges. The appeal of
three-pass regression filter lies in its ability to distinguish between the subset of latent factors
that influence the target, referred to as target-relevant factors, and those that are irrelevant
to the target, but may still drive a large set of predictors. Building on the success of Medeiros
et al.| (2021)) in forecasting inflation with random forest methods, Clark et al.| (2022) focus on
modifying the classic random forest methodology to accommodate high-frequency predictors
and other patterns of missing data. Their proposed methodology, generalizes the standard
random forest by allowing a linear relationship between the target and the splitting variable

at each node, retaining the standard RF model as a special case when the slope is constrained

2In fact, the recent proliferation (and success) of ML methods in economic applications is attributed to
the availability of large datasets, as discussed in |Goulet Coulombe et al|(2022)). Notably, many empirical
macroeconomic studies investigating big data methods, including several cited herein (e.g., |Carriero et al.,
2019a; |Giannone et al., |2021; |Goulet Coulombe et al.| |2022; [Kotchoni et al., 2019; Medeiros et al., 2021)), have
benefited from the availability of a large monthly macroeconomic dataset known as FRED-MD. Developed by
McCracken and Ngjf (2016)), the dataset was compiled and is regularly updated with the goal of providing easy
access to a standardized comprehensive dataset in order to encourage research on data-rich methodologies.
The success and widespread adoption of FRED-MD inspired McCracken and Ng| (2020) to introduce a
quarterly counterpart (FRED-QD), and has led researchers to develop similar monthly datasets for other
countries, such as Canada (Fortin-Gagnon et all 2022)) and the UK (Goulet Coulombe et al., 2021b]).

31t is noteworthy that |Carriero et al.| (2019b)), in a comprehensive meta-analysis of GDP growth and
inflation point and density forecasts across multiple advanced economies, find that models incorporating
a large number of predictors do not outperform those estimated on medium-sized datasets with a dozen
carefully selected predictors. However, their analysis restricts the use of high-dimensional models to standard
and MIDAS factor models, forecast combinations of single-predictor MIDAS regressions, and large BVARs,
thereby excluding machine learning methodologies beyond factor models and simple ensembles. Furthermore,
their set of predictors is limited to variables sampled exclusively at a monthly frequency.



to zero. More recently, Ballarin et al.| (2024)) proposed a methodology based on a relatively
novel family of machine learning models called reservoir computing (RC), specifically adapt-
ing the Echo State Network (ESN) architecture, to handle mixed-frequency time series data.
ESNs are recurrent neural networks (RNNs) whose core advantage is that the underlying
state equation features fixed, randomly sampled parameter matrices, that do not require esti-
mation, unlike conventional RNNs which makes their training difficult. The authors evaluate
the performance of alternative network architectures of their proposed Multi-Frequency Echo
State Network (MFESN) model against standard benchmarks through a multistep out-of-
sample exercise for U.S. GDP, utilizing two information sets containing a total of 9 and
33 predictors, respectively. Despite most of these studies focusing on GDP as their target
variable, they often limit their analysis to a single MLL method and confine their comparative
evaluation to a small set of well-established workhorse models and standard benchmarks,
such as (dynamic) factor models and various univariate approaches. Comprehensive studies
that provide a systematic evaluation of data-rich methodologies for predicting GDP remain

scarce.

1.2 Contributions and Key Takeaways

This study contributes to filling this gap by employing an extensive array of linear and
nonlinear machine learning models to nowcast and forecast U.S. real GDP growth, along-
side state-of-the-art econometric workhorse models, and simple benchmarks. The linear ML
algorithms encompass techniques like Ridge regression, LASSO, Elastic Net, and their adap-
tive variants, as well as the Sparse-group-LASSO-MIDAS regularized regression, specifically
designed for mixed-frequency data. On the nonlinear ML side, the study considers Sup-
port Vector Regression (SVR) and Long Short-Term Memory (LSTM) Recurrent Neural
Networks. The analysis also includes several linear and nonlinear ensemble methods such
as Complete Subset Regressions (CSR), Bagged Linear Regressions, Boosted Linear Regres-
sions, Random Forests, Boosted Regression Trees, as well as a methodology proposed herein:
linear mixed-frequency gradient boosting algorithm with a structured (block-wise) inclusion
of predictor dynamics. Different univariate time-series models are used to establish a base-
line for comparison. Additionally, given the study’s focus on high-dimensional data settings,
factor-augmented autoregressions (FAR) and large Bayesian vector autoregressions (BVARs)
are also included to provide a comparison with established econometric methods developed
particularly for leveraging extensive datasets.

The second contribution of this study lies in evaluating various methods for incorporat-

ing the information from a large set of predictors sampled at different frequencies into the



ML models considered. To achieve this, I construct and compare three information sets,
based on the same set of 257 predictors, that differ only in the way they handle the uneven
frequencies between the quarterly target variable and the predictorsf] Specifically, I con-
sider a simple temporal aggregation scheme where high-frequency predictors are converted
to quarterly by averaging with uniform weighting, as well as two alternatives inspired by the
MIDAS literature. The two methods correspond to alternative approaches proposed in the
literature for parameterizing the weights of lag polynomials. The first method disaggregates
high-frequency series into lagged terms and incorporates both high- and same-frequency
covariates (and their lags) in an wunrestricted manner, similar to that used in U-MIDAS
and standard ADL regressions. The second method aggregates the lagged values of each
covariate (ex-ante) using different sets of weights derived from Legendre polynomials of
varying orders, producing several temporally aggregated versions of each predictor. While
for tree-based nonparametric ML methods there is no estimation of weights involved, I use
the underlying sets of covariates produced by each method as a feature engineering step to
harmonize frequencies and generate a potentially relevant set of regressors for training these
models. Consequently, the aim is, for nonparametric methods to select the individual high-
and /or same-frequency lags or the sets of linear combinations of lags (in the latter case)
that best predict future values of y;. The idea of imposing reasonable restrictive assump-
tions on the pattern of weights in Autoregressive Distributed Lag (ADL) models, dates back
to the early distributed lag literature (Almon) 1965). However, recently researchers have
started exploring the advantages of using orthogonal polynomials, with the seminal work of
Babii et al. (2022), who proposed using Legendre dictionaries to approximate the MIDAS
weight function in the context of high-dimensional regularized MIDAS regressions. To the
best of my knowledge, the present study represents the first attempt to combine Legendre
aggregation with any machine learning method beyond the sparse-group LASSO regression
considered in the aforementioned seminal work. This contribution extends recent efforts
in the macroeconomic forecasting literature to identify the key determinants of forecasting
performances of ML algorithms and other statistical models (e.g., |Carriero et all 2019b}
Goulet Coulombe et al., [2022) and to assess the impact of alternative data transformations
on predictive accuracy (e.g., Goulet Coulombe et al., 2021al) E]

To evaluate the competing forecasting methodologies and information sets, I compile a

4Given that the time-series forecasting problem is inherently a dynamic problem, the three methods for
handling mixed-frequency data also correspond to alternative methods for handling the underlying dynamics
of the predictors sampled at the same or higher frequencies relative to the target.

50ne could also consider constructing additional information sets using the MARX and MAF transforma-
tions proposed by |Goulet Coulombe et al.| (2021a) to aggregate the MIDAS lags of high-frequency predictors
and evaluate their performance in predicting GDP growth alongside those proposed here. However, this is
reserved for future work.



novel comprehensive mixed-frequency dataset for the U.S., by integrating the unique infor-
mation from the FRED-QD and FRED-MD datasets. Earlier in this section, I emphasized
the importance of evaluating model performance in a setting that reflects forecasters’ ac-
cess to extensive datasets, to uncover the potential of ML algorithms and enable a robust
comparison against alternatives. However, large datasets are only one defining characteristic
of today’s forecasting environment. As noted above, policy institutions have increasingly
shifted to monitoring economic activity in nearly real-time. Consequently, a proper eval-
uation of nowcasting and forecasting methodologies requires a well-designed experimental
procedure which takes into account that economic decisions are made in real-time, and mon-
itoring occurs at frequent intervals, or even, as soon as new data are released. To that end, to
create an experimental setup that aligns with the evolving data landscape and how economic
activity is monitored today, the following steps were implemented. First, I constructed a set
of monthly pseudo real-time vintages that take into account the release schedule of economic
data, replicating the ragged-edge the forecaster would encounter at the last day of each
month. Each vintage consists of a pair of unbalanced panels containing 87 quarterly and
171 monthly macroeconomic and financial indicators. Second, I designed two pseudo-out-
of-sample evaluation settings, spanning 18 years of out-of-sample observations, that differ
with respect to the underlying frequency that GDP is assumed to be monitored. The first
experiment assumes GDP is tracked once per quarter and uses quarter-end vintages (i.e.,
corresponding to the third month of each quarter) to conduct the forecast evaluation. The
second experiment replicates monthly monitoring, where GDP nowcasts and forecasts are
generated three times per quarter, at the end of each month. While the standard quarterly
OOS enables the use of statistical tests to assess the robustness of the results, the monthly
evaluation verifies whether the algorithms and information sets identified in the quarterly
OOS are equally suitable for tracking GDP at higher frequencies, in line with current prac-
tices. |Cimadomo et al|(2021) draw a parallel between the challenges of monitoring economic
activity and the defining characteristics of Big Data, encapsulated by the 3 V’s (of Big Data):
Volume, Velocity, and Varietyﬂ In the context of nowcasting (and forecasting) macroeco-
nomic data, these three dimensions can be roughly interpreted as follows: Volume reflects
data richness; Velocity relates to the high frequency flow of data, which enables the real-
time updates of predictions; and Variety encompasses diverse types of data from different
sources, published asynchronously and at varying frequencies, leading to mixed-frequency
datasets with ragged edges. By utilizing a comprehensive mixed-frequency dataset and a set
of month-end vintages designed to reflect real-time data availability, this study evaluates the

comparative performance of models within an experimental framework that incorporates all

5The concept of ‘3 V’s of Big Data’ was popularized by Berman| (2013).



three dimensions.

Despite the ability of machine learning (ML) methods to handle high-dimensional data,
recent studies have found that training ML models on a handful of factors that summarize
a large set of predictors, or combining these common factors with the individual predic-
tors, substantially improves the forecast accuracy of macroeconomic targets compared to
applying ML directly to all individual series (e.g., |Goulet Coulombe et al., [2021a), 2022).[]
This has motivated researchers to explore the effectiveness of combining various ML models
together with factor-only information sets, derived from different factor extraction meth-
ods, often achieving considerable success. For example, Chinn et al.| (2023)) demonstrate the
effectiveness of this approach in an empirical application for nowcasting world trade. On
the other hand, the findings of Medeiros et al.| (2021) from their ML horse race for fore-
casting inflation demonstrate that while the best performing models do not impose sparsity,
assuming a factor representation to model future inflation is also inadequate, whether using
standard linear factor-augmented autoregressive (FAR) models or boosting factors. This
underscores the ongoing debate in the economic forecasting literature on the most effective
way to represent the predictive relationships of macroeconomic targets, which often cen-
ters on choosing between sparse and dense modelling techniquesf| In an effort to reconcile
this debate, (Giannone et al. (2021)), instead of choosing between dense or sparse modelling
techniques, proposed a Bayesian framework that allows for both, leaving the data to de-
cide. Applying their methodology to the problem of forecasting U.S. industrial production
growth and using the FRED-MD data, they found that the best-fitting predictive models
included on average only 25% of the total number of predictors (approximately 32 vari-
ables). However, the subset of the selected predictors was different each time, rejecting
a conclusion for a sparse representation. Their findings suggests that Bayesian and other
types of model averaging techniques pooling models each incorporating several predictors,
can potentially outperform purely sparse models. As an alternative frequentist solution, a
new class of models known as sparse plus dense, has recently emerged, nesting both types
of signals, thereby departing from the standard assumption that coefficients must be either
sparse or dense (Chernozhukov et al., 2017, Fan et al., [2023). Furthermore, Beyhum and
Striaukas (2023) extend sparse plus dense regression methods to handle mixed-frequency

data by proposing two MIDAS adaptations. Specifically, they propose a factor-augmented

"Similarly, Bai and Ng| (2009) find that applying least-squares boosting on principal components overall
performs better compared to boosting the underlying set of observables.

8Ng (2013) classified predictive models designed to handle high-dimensional datasets into two broad
categories based on their dimensionality reduction mechanisms: sparse and dense modelling techniques.
Sparse techniques assume that only a small subset of the available predictors is relevant (e.g., LASSO),
whereas dense models rely on the assumption that all variables are meaningful for the prediction (e.g., ridge
regressions and factor models).



variant of the sg-LASSO-MIDAS regression, in which the coefficients of the common factors
(i.e., dense component) do not enter the sg-LLASSO penalty function. Their second adap-
tation extends the LAVA estimator of |Chernozhukov et al. (2017) to the mixed-frequency
domain by incorporating structured sparsity in the spirit of |[Babii et al.| (2022), where the
parameters of (MIDAS) lags associated with each (high-frequency) predictor are grouped
together. Applying these methods to nowcast U.S. GDP growth, and assuming the dense
component consists of monthly macroeconomic (PCA-based) factors, while weekly financial
and monthly macroeconomic indicators make up the sparse component, they demonstrate
that sparse plus dense MIDAS regression methods can effectively capture shocks during the
COVID pandemic, improving GDP growth nowcasts compared to sparse-only and dense-only
approaches.ﬂ

The final contribution of this study extends this line of research. Given the established
importance of including common factors as regressors in predicting GDP growth, and build-
ing on the recent shift in the ML macroeconomic forecasting literature toward training ML
algorithms with factor-only information sets, I investigate whether GDP growth is best pre-
dicted using only factors on the RHS or composite information sets that combine both factors
and the individual series. To clarify, the primary contribution is not the introduction or ex-
perimentation with sparse plus dense techniques, but rather to provide guidance on the best
ways to combine ML methods with information sets that incorporate common factors. As
such, for sparsity-inducing algorithms, I do not impose a sparse plus dense structure, as the
respective algorithm is allowed to perform variable selection on the included sets of factors.
Using machine learning techniques that induce sparsity, together with information sets com-
posed solely of factors, can be viewed as leveraging the variable-selection capabilities of these
algorithms to identify the most relevant factors and their lags for predicting a specific target
variable (for a similar treatment, see Bai and Ng|, 2009)).

The results of this study complement previous studies that have highlighted the benefits
of utilizing ML techniques together with high-dimensional datasets to form macroeconomic
predictions. Through a rare attempt to compare the performance of so many models, in-
cluding both machine learning and standard state-of-the-art econometric models, this thesis
demonstrates that machine learning methods consistently generate more accurate nowcasts
and short-term forecasts of U.S. GDP growth rates compared to standard workhorse models.
While the analysis evaluated model performance for nowcasts and for up to one year ahead
forecasts, the results suggest that the ability of ML methodologies to predict GDP growth,

primarily concerns shorter horizons, of up to 2 quarters ahead. This is largely in line with the

9Their recommended configuration permits sparse plus dense patterns on macroeconomic predictors,
while imposing a purely sparse structure on financial indicators.
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broader GDP forecasting literature suggesting that the gains of statistical and institutional
GDP forecast over the constant growth model are substantial typically only for the current
and previous quarters (e.g., Banbura et al., [2013]). The evidence from the comparison of the
various information sets considered, suggests that the most effective approach for handling
the heterogeneous frequencies is to temporally aggregate the high-frequency predictors to
match the target variable’s frequency. Furthermore, while material gains in nowcast accu-
racy can overall be realized when adding the individual predictors alongside the principal
component factors that summarize these series, this outcome largely depends on the specific
ML method being used, as well as the selected treatment for the inclusion of predictors
sampled at different frequencies. Notably, reductions in nowcast errors are observed specifi-
cally when models are trained on the information sets that use mixed-frequency data, while
adding the quarterly-aggregated predictors on the models trained solely on quarterly factors
is found to deteriorate out-of-sample performance. The findings from the comparison of
the different information sets suggests that in order to answer the question on how to best
treat mixed-frequency data and whether one should consider incorporating individual pre-
dictors alongside estimated factors, we need to examine the top-performing models and their
constituent components. Among the evaluated algorithms, the L2 boosting method with a
linear base learner trained on the quarterly-factor information set consistently emerges as top
performer, demonstrating robustness across horizons and error metrics. Overall, linear ML
methodologies, such as factor-augmented ARs, Ridge Regressions, Bagging, CSR, LASSO,
EN, and their adaptive variants, are found to dominate the upper quartile of the performance
distribution as measured by the 5-horizon average RMSE, while nonlinear models, partic-
ularly random forests, gain prominence when MAE rankings are used. Among the linear
specifications, bagged linear regressions are found to consistently rank in the top quartile
of model performance, almost regardless of the information set used and across both error
measures. Additionally, the diffusion-index approach of |Stock and Watson! (2002), estimated
with target-factors following Bai and Ng| (2008), is identified as a strong candidate due to
its simplicity and reliable performance, though it does not rank as the absolute best in any
scenario.m Finally, one notable distinction between monitoring GDP on a monthly basis
instead of once at the end of every quarter, is that in the out-of-sample experiment that

assumes the former setting, there is an increased representation of information sets con-

10Tt is noteworthy that, in this study, the standard linear diffusion index model and its targeted counter-
part are based on factors extracted from several quarterly (and quarterly-aggregated monthly) series, that
are available more timely than GDP, and therefore the estimated factors contain several leading observations.
This configuration enables within-quarter updates of predictions generated from the FAR specification, mak-
ing these benchmarks more challenging to outperform, compared to how they are usually depicted in studies
comparing alternative approaches for GDP nowcasting with mixed-frequency data.
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taining high-frequency panels in the upper quartile of both rankings, implying that using

high-frequency predictors helps capture useful within-quarter signals early in the quarter.

1.3 Organization of the Article

Section 2 establishes the methodological framework, and presents the models. Section 3
details the methods for handling input series sampled at different frequencies, setting the
stage for the alternative information sets used to train the machine learning algorithms.
Section 4 gives an overview of the large mixed-frequency dataset, and explains the process for
constructing the set of pseudo real-time vintages. Section 5 presents the forecast evaluation
framework used to assess and compare the candidate models and information sets. Section

6 presents the findings, and Section 7 concludes.

2 Methodology

The goal is to predict ;. over horizons h = 1, ..., H using a large set of potential predictors
represented by the N-dimensional vector X; = (1, ..., 2n;). The general direct-forecasting

framework is given by:

yt+h:fh(Xt)+ut+h, hzl,...,H, tzl,...,T, (1)

where fj,(-) is an unknown function that maps the information spanned by the covariates
to the future values of the target time series, and u;, captures the error which is assumed
to be zero-mean. X, encompasses the typical set of covariates which includes a large set
of economic indicators sampled at various frequencies, and possibly lagged values of the
dependent variable (autoregressive terms), as well as common estimated factorsjr_r] The
direct-forecasting framework implies that a distinct mapping is estimated for each forecasting
horizon, meaning that f(-) varies with h. The purpose of the forecasting problem is to identify
the method that provides the best estimate fh for the target function f,(), with the aim of
minimizing a given measure of prediction accuracy.

Let Y; denote the economic aggregate of interest to this study, the real US GDP. The

macroeconomic forecasting literature commonly assumes that real GDP is best described by

1 Given the focus of this study on generating real-time predictions taking into consideration the delay
in the release of the target variable and the availability of more timely indicators, it should be noted that
the information available to the forecaster for predicting the target variable h periods ahead will typically
extend beyond ¢ and even beyond ¢ + h. However, for simplicity, I maintain the standard notation, and use
subscript ¢ to denote the conditioning information throughout this section. The notation is clarified in the
sections that introduce the different information sets.
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an I (1) process. Consequently, to approximate stationarity in the target variable, the models
presented in this section are set to forecast the continuously compounded (c.c.) quarter-on-

quarter (QoQ) growth rate in quarter ¢ + h, defined as

Yern = 100I(Yeyp/Yiin1) (2)
where Y; is observed for quarters t = 1,...,T. Figure [1| displays the log-transformed QoQ
growth rate of real US GDP over the period 1959Q2 to 2021Q1 (248 quarters). I next

introduce the predictive models evaluated in this article. A comprehensive list of all models
is provided in Table [1}

2.1 Standard Econometric Benchmarks
2.1.1 Autoregressive Model

This article employs several autoregressive (AR) benchmarks using the iterated forecasting
formulation, with alternative methods for determining the lag order. The forecasts for the
P-th order autoregressive model, AR(P), are obtained by first estimating the parameters in

the following one-period-ahead model using OLS:

P
Yir1 = Go + Z OpYey1—p + €t (3)

p=1

The h-step ahead forecast is then recursively computed using: gy = Qg() + 25:1 ggpgjt+h,p|t.

2.1.2 Random Walk

The second benchmark in the univariate time-series family, is the constant-growth model,
derived by constraining the autoregressive parameters in Equation [3| to be zero, i.e., setting
P = 0. Specifically, restricting ¢, = 0, yields the white noise model for GDP growth (y:),
which implies an underlying random walk (RW) with drift process for the (log) level of
GDP. We refer to the constant-growth model as the RW model, and include it among the

benchmarks.

2.1.3 Large Vector Autoregressions

Vector autoregressions (VARs) are among the workhorse models for both forecasting and
policy analysis. Let y; = (y14,...,yn¢)" represent the vector of N observables. The general

VAR(p) model can then be expressed as:
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Figure 1: Real GDP growth rate, 1959Q2 to 2021Q1

and minus 2.5 times its interquartile range, highlighting unusually large deviations. Shaded areas

The two horizontal dashed lines indicate thresholds corresponding to the median of the series plus
denote NBER recession periods.

14



Table 1: List of time series forecasting models

Acronym Model Description Reference
AR(P) Autoregressive iterated-specification
RwW Random walk
ARDI(K) Autoregressive diffusion indices with K Stock and Watson| (2002
factors. Optimal lag-order via BIC
T.ARDI(K) ARDI with target-factors. Hard- Bai and Ng| (2008
threshold set to |t-stat|>1.96
BVAR-Minn Homoscedastic large Bayesian VAR Banbura et al.| (2010
BVAR-CSV Large Bayesian VAR with het- Carriero et al.| (2016
eroscedastic innovations
Ridge Ridge regression with BIC for A |Hoerl and Kennard| (]1970])
LASSO Least absolute shrinkage and selection Tibshirani| (1996
operator with BIC for A
AdaLASSO Adaptive LASSO Zoul| (2006)
EN Elastic Net with a = 0.5 Zou and Hastie] (2005)
AdaEN Adaptive EN
CSR Complete Subset Regressions (20C4) Elliott et al.| (2013
with hard-thresholding preselection
Bag Bagging linear regressions Inoue and Kilian| (2008
BBoost Boosting linear regressions, block-wise Bai and Ng| (2009
CBoost Boosting linear regressions, Buehlmann| (2006
component-wise
BTree Boosting regression trees Friedman| (2001
RF Random forests Breiman | (2001)
SVR Support vector machine regression with Drucker et al.| (1996
Gaussian Kernel function
LSTM Long-short-term memory RNN Hochreiter and Schmidhuber| (1997

SeT.ASSO-MIDAS

with 3-hidden layers
Sparse-group LASSO-MIDAS  with
block-K-fold CV for A & ~

Babii et al.| (2022
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y: = A() + A(L)yt_l + wy (4)

where Ag is an N X 1 vector of intercepts, A(L) = Y7 | A;L""! represents a p-th order
lag polynomial of VAR coefficients with each A; being an N x N coefficient matrix, and u
denotes the residuals. This study considers two commonly adopted variants. The first is
the standard VAR in which innovations are assumed to be homoscedastic, and the second
considers a flexible covariance structure allowing for heteroscedastic errors. Formally, the

homoscedastic VAR model is given by assuming errors to be independent and identically
distributed (iid):

u; ~ N(O, Z)

To allow for heteroscedastic innovations, this study adopts the common stochastic volatility
(CSV) model proposed by |Carriero et al.| (2016]), where the covariance matrix is scaled by a

time-varying common factor, ¢, such that:
u, ~ N (0,e"3),

where the log volatility follows a stationary AR(1) process, h; = phy_; + &f, with |p| < 1
and e ~ N(0,02). The two systems are estimated using Bayesian methods on a dataset of
20 quarterly variables. A description of the data and the priors used in estimating the two

large BVAR systems is provided in Section ?7.

2.2 Factor Models
2.2.1 Autoregressive Diffusion Index Model

Stock and Watson| (2002) introduced a framework, known as the factor-augmented regres-
sions (FAR), that utilizes common factors, estimated through principal components, to fore-
cast a target variable. Specifically, the predictors are assumed to follow an underlying factor

structure, represented by

Xt = AFt + e (5)

where F; denotes an 7 x 1 vector of common factors, A = (Ay,... A\y) is the matrix of factor
loadings, and e; the idiosyncratic component, which captures the part of X; not explained

by the factors. The FAR forecasting equation takes the form

Yerh = Y + an(L)y: + ﬁh(L)ft + Et+n (6)
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where ft C F,is an k x 1 vector, and F} is the 7 x 1 vector of principal component estimates of
F, extracted from the set of the N observed predictors. a; (L) and /35 (L) represent finite order
lag polynomials with dimensions p and V}, respectively. This study estimates static factors
using the standard PCA algorithm with the expectation-maximization (EM) modification
proposed by Stock and Watson| (2002) to address the unbalancedness of X;.

2.2.2 Autoregressive Diffusion Index Model with Targeted Predictors

Bai and Ng (2008) proposed modifying the standard factor-augmented regression (FAR)
framework to use factors tailored to forecast a specific target variable. They introduce a
preselection procedure to identify the subset of predictors most relevant to the target variable,
and then apply principal components analysis to extract common factors from the refined set
containing the targeted predictors. They propose various hard- and soft-thresholding rules
that filter predictors based on their predictive power for the target series. In this study,
targeted-DI forecasts are generated using a hard-thresholding preselection method. The

procedure for modifying the standard FAR model is as follows:

(i) For predictor ¢ = 1,..., N in X;, run an OLS regression of y;; on x;; along with a
set of control variables W, typically a constant and lags of the dependent variable ;.
Conduct a two-sided test for the null hypothesis that the parameter associated with
x; 1s zero, and let ¢; represent the resulting ¢-statistic.

(ii) The N}-dimensional vector of targeted predictors is given by: X, = {x; € X; | [t;| > ¢ca},
where ¢, is the critical value at significance level a.

(iii) Principal components analysis is then applied on the set of targeted predictors X, and
h-period-ahead forecasts are generated from the standard FAR framework predictive

regression (Equation [f)

2.3 Linear ML Methods

Penalized linear regressions are the natural choice within the family of linear models, in
settings where the number of predictors exceeds the number of observations. For linear
models, the target function in Equation [1] takes the form f,(X;) = 3,X;, and the general

framework for the shrinkage estimator is given by

T—h N
B, = arg min Z(yt+h — Qp — ﬁ;lXt)Q + Zp(ﬂhz) (7)
o Le=1 i=1

where p(fy,) denotes the penalty function that depends on the tuning parameter A > 0

which determines the balance between model complexity and in-sample fit. I consider several
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popular alternatives for the penalty function.

2.3.1 Ridge Regression

Ridge regression (RR) was proposed by [Hoerl and Kennard| (1970). The penalty is given by:

N N
Zp(ﬁh,z‘) = /\||5||§ = )\Zﬁi,r (8)
i=1 i=1

Ridge regression shrinks the coeflicients of less relevant variables towards zero but retains

all predictors in the model, which means it does not perform variable selection.

2.3.2 Least Absolute Shrinkage and Selection Operator

The LASSO regression was introduced by Tibshirani (1996)) who added the ¢; penalty to the

loss function of a linear regression model. The penalty is given by:

N N

Zp</8h,’i> = A8l = AZW}M- (9)

i=1 i=1
The ¢, penalty shrinks the coefficients, and unlike RR, it can set the coefficients of less
relevant predictors exactly to zero, effectively performing variable selection and producing

sparse models.

2.3.3 Adaptive LASSO

The adaptive LASSO (adaLLASSO), proposed by Zou| (2006)), uses a weighted version of
the ¢, penalty term based on initial estimates of the coefficients obtained from a first-step

regression. The penalty is defined as:

N N
Zp(ﬁh,i) = A Z wi| Bpi] (10)
i=1 i=1

~1
where w; =

Bh.i

are the adaptive weights, and [} ; is the coefficient from the first-step

estimation.

2.3.4 Elastic Net

Zou and Hastie| (2005) propose the elastic net (EN) which combines the ¢; (LASSO) and /(5
(Ridge) penalties to address their individual limitations. The penalty is given by:
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N

N N
D p(Bri) =) B+ A1 =) |Bul (11)
=1 i=1

i=1
where « € [0, 1] is a tuning parameter that determines the relative contributions of the two

penalties, with a = 0 giving the LASSO solution, while & = 1 providing the Ridge estimator.

2.3.5 Adaptive EN

Finally, from the family of shrinkage estimators, I also consider the adaptive modification
of the EN model (adaEN) proposed by |Zou and Zhang| (2009)). It is defined similarly to the
adalLASSO, and it’s estimation involves a two-step procedure with the weights defined by a

first-round estimation of the EN model.

2.4 Ensemble Methods

2.4.1 Complete Subset Regressions

In settings where the number of potential predictors is large, an exhaustive forecast combi-
nation approach, which involves forming linear regressions with all possible variable combi-
nations, becomes practically infeasible, as the number of models to be pooled together grows
prohibitively large. To limit the number of models to be pooled and render the problem
computationally feasible, Elliott et al.| (2013] 2015 propose generating forecast combina-
tions from all possible linear regression models formed by selecting a fixed number of k
variables from the total set of N predictors. They refer to this collection of k-variate mod-
els as a complete subset and advocate using equal-weighted combinations. The predictive

regression for the m-th model in the complete subset is given by:

ym,t+h = 7m + a;nWt + (Xzsm)ﬁm + Em,tJrh (12)

where S, is a N x N diagonal selector matrix with k of its diagonal entries set to 1, while
all other diagonal elements set to 0. The k unity elements indicate which variables are

included in the m-th k-variate model. With a dataset containing /N variables, the number

of possible models generated from combining £ regressors is given by cy i = k'(Nle)' Let
M = [ml, Moy ch,k} denote the model space of all the possible k-variate combinations.
The CSR forecast is then the equal-weighted average:

. 1 .

Yernit = 37 Z Ym t+ht (13)

meM
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where M = cy . In situations with many predictors, even when £ is small, the number of
different k-variate models in the complete subset can still be significantly largeF_Z] To make
computing CSR forecasts feasible, in this study, I adopt a strategy similar to that of Kotchoni
et al.| (2019)) and Medeiros et al. (2021) who limit the number of combinations by introducing
a preselection step a la Bai and Ng (2008)). Specifically, a variant of the hard-thresholding
algorithm outlined in Section is employed, where only the N* < N variables with the
highest absolute t-statistics are retained, and predictive regressions are formed considering

combinations of k variables from the updated set containing the Nx targeted predictors.

2.4.2 Bagging Linear Regressions

Bagging or bootstrap aggregation, proposed by Breiman| (1996), is an ensemble technique
designed to reduce the out-of-sample prediction error by pooling together predictions from
multiple unstable modelsEg] The bagging predictor is obtained by generating a large number
of bootstrap resamples of the original data, applying a pretest model selection rule to each
of these resamples, and subsequently averaging the predictions from the models selected by
the pretest on each bootstrap sample. Inoue and Kilian (2008)) popularized its application
to time-series models by examining its effectiveness in predicting U.S. CPI inflation. The

modified bagging algorithm for high-dimensional time-series proceeds as follows:

(i) For each bootstrap sample b=1,..., B:

(a) Run a pre-selection step by conducting two-sided tests on each slope parameter
from an OLS regression fitted on the b-th sample using all N potential predictors.
Identify the subset of predictors that are statistically significant at a specified
level &: X7 = {z; € X, | [tP] > ¢5).

i

(b) Run an OLS regression on the b-th bootstrap replica containing only the N® sig-

nificant variables from the previous step, and calculate the h-step-ahead forecast,

on the original data: g]:frb}z't =4O + a*O'W, + B*(b),Xt*(b)-

(ii) The bagged forecast is the average of all forecasts across the B bootstrap samples:
1 B
A ~x(b
Yeehlt = 5 Z ytJ(r,zu. (14)
b=1

As outlined above, the bagging algorithm requires that ¢-statistics are obtained from a re-

gression that jointly considers the full set of potential predictors. In data-rich environments,

12For instance, with N = 257, even for k = 4 there are 177.556.160 different models.
13 As Breiman noted in his seminal paper (Breiman,|1996), ‘if perturbing the training set leads to significant
changes in the predictions, then bagging can improve accuracy.’
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this is likely to be infeasible, as T << N. To address this, Medeiros et al.| (2021) suggest
modifying the screening step by randomly dividing all variables into equal-sized groups and
gathering the t-statistics obtained from estimating a regression for each group. Nevertheless,
when the target variable is a low-frequency macroeconomic aggregate, the OLS infeasibility
issue may persist, as observed in our case. To address the persistent dimensionality prob-
lem, I introduce an additional randomized variable-selection step following the group-based
pretesting stage, by uniformly drawing a subset of N variables without replacement from

the set of N® predictors identified by the group-based preselection procedure.

2.4.3 Boosting Linear Regressions

Boosting, originally introduced by Schapire, (1990), and later [Friedman! (2001) formalized
it as a functional gradient descent algorithm, is an ensemble technique for approximating
an unknown nonlinear function ®(.) by sequentially estimating multiple weak learnersﬁ
Assuming that the quadratic-error loss function is used to penalize deviations of ®(X;) from

yi, the boosting algorithm solves the problem:

T
. 1 )
¢ = argmin_; > (y — (X)) (15)

t=1
Under quadratic loss, the algorithm approximates ®(z) = E(y;|X; = =), and the boosting
algorithm reduces to an iterative least-squares refitting of the residuals (Friedman, 2001).@

The iterative procedure for the generic Lo boosting algorithm, under certain base pro-
cedures that ensure the additiveness of the model, can be described as follows. At each
iteration, m = 1, ..., M, the algorithm fits a new learner to the current residuals, defined
as the difference between the observed response and the aggregated function estimates

from all previously trained learners. Formally, the residuals at iteration m are given by

14This additional step mirrors Breiman’s double randomization technique in random forests, where each
tree is grown by randomly selecting a subset of predictors at every split node. This feature of the random
forests is essential in reducing the correlation among base learners (individual trees), leading to their superior
out-of-sample performance relative to a simple ensemble of bagged trees. In a similar spirit, the introduced
randomization step not only ensures the feasibility of the estimates, but also facilitates the pooling of
signals from base learners that carry distinct information, potentially enhancing the forecast accuracy of the
aggregated signal.

15 Weak learner is a particular type of base learner. Although the two terms are often used interchangeably,
they carry distinct meanings. Base learner is a general term that describes the model that forms the building
block of the ensemble, regardless of its individual strength. In the context of boosting ensembles, the building
blocks are typically referred to as weak learners, since they are deliberately designed to have weak predictive
power.

16The squared-error loss functions, was formalized in the context of boosting by Biihlmann and Yul (2003),
who also introduced the term Ls-Boost to describe the boosting algorithm minimizing this loss. Gradient
boosting algorithms that minimize the quadratic error loss function are also commonly referred to as least-
squares boosting (LS Boost).
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Ut = Yt — Vzgn:_ll ngSj (X:), where ggj (X;) denotes the prediction from the weak learner at
the j-th iteration. The newly fitted learner from the m-th round, ¢,,, is shrunk by a fac-
tor v € (0,1] and added to the overall fit, arriving after M iterations to the final estimate
pr() = Do) + VZ%:l ém(.). This final step highlights that boosting operates as an en-
semble technique, where the resulting estimate d,; is the sum of M weak learners ngSm, each
fitted to the re-weighted versions of the data, also known as pseudo residuals.

A key to avoiding overfitting in the boosting framework is to ensure that the learner
remains weak, meaning it exhibits high bias and low variance. To that end, a particularly
effective approach for carrying out boosting in high-dimensional problems, is to introduce
learners that select only one variable at each iteration. This strategy, known as compo-
nentwise boosting, was introduced by Bithlmann and Yu (2003). Following Bai and Ng
(2009), this study employs two methods for incorporating the lags of different covariates.
The first approach follows naturally from the idea of componentwise boosting, and treats
each variable and its lags as distinct predictors, while the second approach modifies the base
learner, to treat lags of the same variable as a group, allowing for a structured inclusion
of predictor dynamics. Below, I formally introduce the L, boosting procedure for each of
the two alternative lag treatments, referred to as component-wise and block-wise boosting

algorithms:

Component-wise Boosting

(i) Let ‘i)t,o = g for each t, with § = % Zizl Ys

(ii) For iteration m =1,..., M:

a) Calculate the current residuals 4y, =y, — <i>t7m,1

b) For each variable i = 1,..., N regress the current residuals @ on the i-th regressor
to obtain l;z Compute é;; = u; — x“l;z and the corresponding SSR; = é.é;.

c) Let if, denote the index of the predictor selected at the m-th iteration, corre-

sponding to that delivering the smallest SSR:

i€[l,...,N]

t
SSR;; = min SSR; = Z_I{unN;(ﬁs — 95m(1332))2

d) Let Q;t,m = xt,ml;m.
e) Update @)t,m = <i>t7m,1 + yggt,m where 0 < v < 1 is the step length.

Block-wise Boosting
(i) Let <i>t70 = y for each t.
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(i) Form=1,..., M:

a) Calculate the current residuals G, = y; — Cf%’m_l

b) For each variable i = 1,..., N estimate the model:

by a
Uy = E ApYt—p + E 5(]37257((171),@' + vy
p=1 q=1

where lag orders (p}, ¢F) for the i-th regressor are selected via BIC.

c) Let (p},q;) = argmin, , BIC(p, ¢), and b; the OLS estimator obtained by regress-
ing @ on 2;; where zp; = (Ys—1, -+ Yept» Tty -+ -5 T (gr 1)) -
Compute é;; = U — zgli), and the corresponding SSR; = éé;.

d) Let ¥, be such that SSR;: = minepr,. N SSR;.

e) Let gz@um = Zti:nl;i:fn-

f) Update (i)t,m = (i)t,m—l —+ ngt,m-

To tune the two hyperparameters of the model, namely the learning rate v, and the
number of iterations M, Biithlmann and Yu| (2003) recommend using a small value of v,
leaving only the need for a stopping rule in order to determine M. In this study, I follow

Bai and Ng| (2009) and use information criteria to determine the stopping rule.

2.5 Nonlinear ML Methods
2.5.1 Random Forests

One can create tree ensembles using bagging applied to a set of trees by generating many
bootstrap replicas of the original data and growing individual trees to each replica. A
prominent example is the random forests model, proposed by Breiman (2001), which is a
special case of a bagged trees ensemble, that incorporates an extra layer of randomness in
the splitting stage, which helps control overfitting and strengthen prediction accuracy. Be-
fore delving into the specifics of random forests, it is instructive to examine its foundational
building block, the regression tree. A regression tree is a nonparametric model that estimates
the relationship between a target variable and its predictors by recursively partitioning the
covariate space into a series of regions, allowing it to capture complex and potentially nonlin-
ear relationships (Breiman et al., |1984). A tree is grown by recursively performing a binary
split in each branch node using one of the variables, creating two (left and right) child nodes
at each time. At each node, a set of rules determines the best variable to split, and at what
value to perform the split (see figure . The random forests ensemble averages predictions

from multiple regression trees. The algorithm is implemented as follows:
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Figure 2: Illustration of regression tree with two variables (left) and the corresponding
regression surface (right). Adapted from Efron and Hastie| (2021)), Figure 8.6.

(i) Generate B bootstrap versions of the original dataset (yin, X/).

(ii) Specify the minimum leaf size which will determine the number of regions, K;,. For
each bootstrap resample b =1, ..., B, grow a tree by sampling a random subset N* of
the N predictors prior to each split.

(iii) The random forests forecast is obtained by averaging the predictions from the B re-

gression trees, calculated using the original data:

Ky
Z B\k,blk,b (Xt; §k7b>] .

k=1

1 B
th:Ebz_;

where I (Xy; 0;) denotes an indicator function determining membership in each region (cor-

responding to a single terminal node), such as:

1 if Xy € Ri(0k)
[p(Xe; 0k) = t
0 otherwise,

with 6 the set of parameters of the b-th tree that define the k-th region (i.e. the optimal

variable and splitting point in each parent node within the path to terminal node k).
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2.5.2 Boosting Regression Trees

In addition to the previously introduced boosting framework with linear regressions, the
gradient boosting algorithm can also be implemented using trees as base learners. The least-

squares gradient boosting algorithm modified to use regression trees, proceeds as follows:

(i) Set the number of steps M and the shrinkage factor v € (0, 1], and initialize Ci)w =7q.
(ii)) For m =1,..., M repeat:

a) Compute the current residuals 4y = y; — qA)tym,l

b) Fit a shallow regression tree to the data (i, X;,)"_,, and obtain the estimate for

s=1’
¢t,m
c) Update the fitted model by adding the shrunken version of ¢y ,:
(i)t,m = (Apt,m—l + V&t,m-

(iii) The final fitted value is given by ¢y =7+ v Zf\f:l qgt,m.

2.5.3 Support Vector Regression

Support-vector machines (SVM) were initially invented by [Vapnik (1995) as a classification
approach, and were later expanded to handle continuous response variables by |[Drucker et al.
(1996) who introduced support-vector regressions (SVR). The objective in the e-insensitive
support-vector (e-SV) regression, which takes its name from the underlying (e-insensitive)
loss function that is defined below, is to find a function f(x) that deviates at most ¢ from
the observed y; for all the training data, and at the same time is as flat as possible. The
linear function we are seeking to find, takes the form f(z) = (w,z) + b with b € R, where
(+,-) denotes the dot product. The above problem can be formally defined as a minimization

of a loss function plus a penalty (referred to as regularized risk):

T
. 1 A
Jo = argmin; g = T E L(zi, yi, f(:)) + 5““’”2 (16)
i=1

where H is some function class, A > 0 denotes the regularization constant, and L(.) is the

e-insensitive loss function, described by:

0 if ly; — f(zi,w)| <e
L(zi, yi, f(2:),w) =
lyi — f(z;,w)| —e  otherwise.

The problem can be rewritten in its Lagrangian form with the help of a dual set of
variables. The reformulation of the problem to its dual form, further allows us to extend

the SV machine to nonlinear functions, by replacing the dot product with a nonlinear kernel
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function k(z, 2’) := (®(z), ®(a')), where ®(x) is a transformation that maps the training data
x; to a (potentially) high-dimensional feature space. Applying the optimality conditions and
following some derivations that can be tracked in Smola and Scholkopf (2004), we can restate

the optimization problem of the nonlinear regression SVM in its dual Lagrangian form, where

one has to find coefficients «;, o}, i = 1,...,7T that maximize:
1 I T T
W = -5 Z(ai —af)(a — a;)k(:ci, ;) — 82(0@ +al) + Zyi(ai —al) (17)
i,j=1 1=1 =1
subject to S (a; —af) = 0 and oy, af € [0,C], where oy, af are Lagrange multipli-

ers. To obtain the optimal solution, the Karush-Kuhn-Tucker (KKT) complementarity
conditions are required. From the optimality conditions, we retrieve the w parameter,

w=S""(a; — aF)®(x;), yielding the following optimal solution for the function:

2.5.4 Neural Networks

Long Short-Term Memory (LSTM) networks are a particular class of recurrent neural net-
works (RNNs) introduced by Hochreiter and Schmidhuber| (1997), and further refined by
Graves and Schmidhuber| (2005). They employ units known as Constant Error Carousels
(CECs), which facilitate stable gradient propagation and enable the network to capture
long-term dependencies. This architecture makes LSTMs particularly well suited for mod-
elling time series and other forms of sequential data.
The formulas that describe the components for a vanilla LSTM layer at time ¢, are given
by:
g =0.Wyx; +Rh 1 +b,) cell candidate

iv = o,(Wixy + Rihy_; + b)) input gate
fi = 0,(Wsxy + Rehyq + by) forget gate
G=[iOc 1+ O g cell state
op = 0,(Woxi + Rohi_1 + b,) output gate
h, = 0, ® h(cy) hidden state

and Qt—i—h/t = Uyht + by

where c¢; denotes the cell state at time ¢, and h; the hidden state. The hidden state is also

referred to as the block or cell output’, and the cell candidate (g;) as the ’input’ of the cell.
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0¢,04 and h are point-wise non-linear activation functions for the cell input, the gates and
the cell state, respectively. The logistic sigmoid (Jg(x) =(1+ e‘”)_1> is used as the activa-
tion function for the gates, while the hyperbolic tangent (o.(x) = h(z) = tanh(z)) is usually
used as the cell input and output activation function. ® denotes element-wise multiplication
of two vectors (Hadamard product). W R, and b are the weights to be estimated. Specifi-
cally, matrices W and R contain the input and the recurrent weights, respectively, while b
denotes the vector of the bias weights. The number of blocks (neurons) in each LSTM layer
determines the dimension of hidden state in the corresponding layer. Assuming N inputs
and H LSTM blocks, then the weights for the LSTM layer are: W, W,; W ; W, € RE*V;
R,, R, R;, R, € R*#: and b,,b;, bs, b, € R¥. At the final step, the prediction, g, is

calculated as the linear combination of the hidden states.

2.6 Mixed-Frequency Models
2.6.1 Sparse-group-LASSO-MIDAS

Babii et al.| (2022) introduced a penalized regression model specifically tailored for high-
dimensional settings involving mixed-frequency data. They proposed utilizing the sparse-
group LASSO (sg-LASSO) estimator of [Simon et al.| (2013)), which solves the following pe-

nalized least-squares problem:

: _ 2
min [y — Xb][7 + AL(b) (18)

where A > 0 is the regularization parameter, and €2 the sg-LASSO penalty function:

Q) = ylbly + (1 = )bll2.1,

where weight parameter v € [0, 1] balances between the ¢; LASSO penalty (y = 1) and
the group LASSO norm (y = 0; see, Yuan and Lin, 2006)), [|b]l21 = > qeglbal, with G
denoting the group structure. In a time series forecasting context the authors propose
forming groups consisting of each covariate’s lags. More formally, their suggested approach
utilizes a dictionary which is a collection of functions used to define alternative sets of weights
for the lag polynomials of the various covariates. When the forecasting problem involves data
sampled at different frequencies, high-frequency information is incorporated into the model
in a MIDAS fashion through high-frequency lag polynomials. Given these group structures,
the sparse-group LASSO regularization enables a structured sparsity approach, allowing for
variable selection both between groups, using the group LASSO penalty to identify the most

relevant covariates, and within groups, using the standard LASSO penalty to determine the
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shape of the (MIDAS) weight function.

3 Methods for Handling Mixed-Frequency Data

In empirical macroeconomic analyses involving variables measured at different frequencies,
a key challenge is how to address the frequency mismatch to analyze relationships between
these variables. To incorporate information from large mixed-frequency datasets into the ML
models introduced above, I draw on methods from the distributed lag literature, which allow
the integration of high-frequency time series (and their lags) into low-frequency regression
equations. Table [2[ summarizes the three alternative methods, employed in this study, for
harmonizing uneven frequencies and handling the lags of covariates sampled at the same or
higher frequencies relative to the target, and provides the labels for the respective information

set used to train the competing ML models.

Table 2: List of Information Sets

Acronym Description
D1 Equal-weighted Temporal Aggregation
D2 Unrestricted Lag Polynomials

D3 Legendre Polynomial Weights (3rd degree)

Before introducing each method, it is essential to define certain terms to facilitate the
subsequent discussion. I use the term leading observations to refer to any observations in
a series that correspond to periods following the last available observation of the target
variable, t. Let ¢; denote the number of available leading observations in series i, potentially
sampled at high-frequency, and ¢t + w; denote the final period for which data is available for
predictor . We define the term leads as the set of ¢; variables extracted, after applying the lag
operator to the series containing the leading observations. For a high-frequency predictor ¢,
the lag operator is defined as LY "™y = Ty—1/m, Where m represents the frequency mismatch
between the target and the predictor, The set of lagged variables referred to as leads is then
obtained from L7/ " Tyqw, i for 3 =0,1,..,¢ — 1. Given these definitions, ¢; > 0 implies that
covariate i is released more timely than the GDP, with the first ¢; months of quarter ¢ + 1
being available for that series. The notation for time periods adopted here references the

low (aggregate) period, so both ¢ and t 4+ w correspond to quarters.
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3.1 Single-frequency Information Set

Deterministic Temporal Aggregation The first information set (D1) evaluated in this
study is constructed by combining predictors originally available at a quarterly frequency
with the downsampled version of the high-frequency series, which are converted to quarterly
by applying an equal-weighted average after any preprocessing steps. Formally, following the
temporal aggregation literature (e.g., Chow and Lin| [1971)), the conversion of high-frequency
indicator data to aggregated low-frequency observations is achieved through a deterministic
aggregator function 1 (L'/™), applied in the lag operator L'/™. In the context of a monthly—
quarterly conversion, the expression for downsampling the monthly predictor M to xt takes

the form:

¥ = Y(LM?) M Zw][//?’xt ,

with w; = 1/3 providing the uniformly weighted average.

3.2 Mixed-frequency Information Sets

While ex-ante temporal aggregation is a straightforward and simple approach for forecasting
with predictors sampled at different frequencies, deterministic aggregation of time series,
can lead to loss of potentially valuable high-frequency information (see Marcellino, 1999)).
An alternative approach to handle mixed-frequency data, without resorting to resampling
high-frequency series, is the mixed-frequency data sampling (MIDAS) regression framework
proposed by (Ghysels et al.| (2005], 2006}, 2007)) and |[Andreou et al|(2010)), which enables the
estimation of dynamic equations in which high-frequency predictors are projected directly
onto a low-frequency target. MIDAS regressions employ distributed lag structures specifically
designed for high-frequency variables, allowing the weights for the aggregation of lags to be
determined empirically. The MIDAS regression for forecasting a low-frequency target h

periods ahead using N covariates x; potentially sampled at different frequencies, is given by:

Ytrn = @+ Z GpYt—p + Z B Ll/m )xt+wz,z + Uttn, (19)
p=0

where (LY™;w;) = ZV_Ol wi(0, 7)L7/™ is the (high-frequency) lag polynomial, and V; is
total number of (leads and) lags for i-th predictor. In the standard MIDAS framework, in
order to ensure a parsimonious specification, the lag polynomial is typically specified as an
exponential Almon lag polynomial (Liitkepohl, 1981), where the lag weights wf are defined

by a functional form. Next, I describe two alternative methods from the recent MIDAS
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literature for parameterizing polynomial weights, that provide suitable options for use with
machine learning algorithms. Note that, although most ML models introduced earlier do
not explicitly involve lag polynomials (with a few exceptions), however, the underlying sets
of variables involved in the parameterization of the lag polynomials, as suggested by the
two methods, can serve as information sets to train ML methods, ‘framing’ them as lag

polynomials.

3.2.1 Unrestricted Lag Polynomials

An appealing MIDAS variant, suitable when the frequency mismatch is small, is the Un-
restricted MIDAS (U-MIDAS) approach, first proposed by Koenig et al. (2003), and later
formalized by |Foroni et al. (2015)), which parameterizes MIDAS polynomial weights with-
out relying on functional distributed lag polynomials. The unrestricted model is obtained
from Equation [19) by relaxing the functional restriction g (Ll/ m. wi), and replacing it with
5i(L1/m), arriving at

N V-1

Yern =+ Z PpYi—p + Z Z 0; L]/mmtﬂuz i+ Ugpn- (20)

=1 7=0
where in the standard linear regression setup, Equation [20|can be estimated via OLS. Inspired
by the U-MIDAS approach, this study adopts the idea and uses the information set obtained
by gathering the leads and lags for each high and same frequency predictor to train the ML
specifications introduced earlier. As such, the U-MIDAS information set (D2) is given by
(Z1,...,2ZnN), where Z;; = (LJ/ Tt i, Z) 0L V]’

3.2.2 Aggregation with Legendre Dictionaries

Babii et al.| (2022)) propose parameterizing the lag coefficients by expressing the MIDAS
weight function as a linear combination of a collection of approximating functions w;(u)
with u € [0, 1], referred to as dictionary. Using their approach, the linear MIDAS regression
(Eq.[19), can be rewritten as:

Ytn = Z‘bp?% —-p T Z Zﬁzl Z Ul< ‘ )L’/"L$t+wi,i + Usgh, (21)

i=1 =1 Vi
with {w;: {=1,... ,L}, and L < V; the dlctlonary size, which is determined by the poly-
nomial degree. The authors recommend using orthogonal polynomials for the dictionary,
such as Legendre polynomials that can reduce multicollinearity. Notably, L < V; leads to

dimensionality reductions, which is especially advantageous for covariates sampled at very
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high frequencies, like weekly or daily data.m When dimensionality is not an issue, such as
when the forecasting problem involves only a few covariates, Equation [21] can be estimated
using OLS. However, as discussed in Section [2.6.1], in high-dimensional time-series settings,
Babii et al.| (2022)) propose using the sg-LASSO estimator. Given the dictionary choice,
Equation is simply a linear regression, estimated using an information set obtained by
weighting the lagged values of each covariate with a matrix generated from the weight func-
tion, yielding various temporally aggregated versions of each predictor. This set serves as
the second information set proposed in this study for training the various ML algorithms
introduced in the previous section. Formally, let W = (wi(j/m)/V;);ciov,_1)e(1.1) denote the
V; x L matrix of weights, and Z; the T' x V; matrix of the i-th covariate and its lags. The
Legendre-formulated information set (D3) is then obtained by aggregating each row of Z;
using dictionary W, as follows: (Z;W,. .., ZNW).EHﬂ

4 Data

To construct the mixed-frequency dataset, indicators were combined from two comprehensive
macroeconomic datasets (McCracken and Ngj, 2020, [2016)) that replicate the coverage in the
‘Stock-Watson’ datasets (Stock and Watson, 2005, 2012): the FRED-MD, which includes
variables sampled at a monthly frequency, and the FRED-QD, which contains a collection of
quarterly series. Although the two datasets have been widely used in the literature to evalu-
ate the performance of alternative forecasting methodologies in data-rich environments, this
study is the first attempt to use the two in tandem and leverage the combined informational
content to guide the model selection process within a data-rich mixed-frequency framework.

Since the FRED-MD and FRED-QD datasets were not originally designed to be used
together as a bundle of mixed-frequency panels, numerous indicators in the FRED-QD vin-
tages are temporally-aggregated versions of the series found in FRED-MD. To isolate the
unique information from both datasets and create a coherent comprehensive set of macroeco-

nomic variables sampled at different frequencies, the following steps were undertaken. First,

ITFor instance, if considering a quarter’s worth of past information for the lagged terms of the predictors,
a daily financial indicator would require approximately 66 lags (one for each trading day), while a weekly
series would require about 13 lags.

18 Although flexible, aggregation based on Legendre polynomials still imposes predefined parametric re-
strictions on the shape of the polynomial, making it more restrictive compared to the U-MIDAS approach.
Nonetheless, when differences in sampling frequencies are large, the dimensionality reduction and mitigation
of multicollinearity can offer potential benefits.

9To get an idea of the flexibility of Legendre polynomials in approximating different lag structures,
Appendix [A] provides an example of the various sets of weights generated by Legendre polynomials when the
degree is set to 3.
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the FRED-MD and FRED-QD vintages for April 2021 were downloadedFE] The datasets
initially consisted of unbalanced panels featuring 135 monthly and 248 quarterly indica-
tors, respectively. Subsequently, overlapping variables were removed from the correspond-
ing panels, and series available at a higher sampling frequency on the FRED data server
(https://fred.stlouisfed.org) were downloaded at their highest available frequency. These
steps resulted in a mixed-frequency dataset with a quarterly and a monthly panel consisting

of 87 and 171 series, respectively, including 32 financial market indicators.

4.1 Pseudo Real-Time Vintages

In the absence of a set of actual vintages suitable for contexts requiring the use of rich mixed-
frequency datasets, in order to recreate an experimental setup that captures how economic
activity is monitored today, publication release delays for each series in the two unbalanced
panels were inferred from the online FRED metadata and then applied to the individual
predictors. This resulted in the creation of 219 monthly pseudo real-time vintages spanning
the period January 2003 to March 2021. FEach vintage consists of a pair of unbalanced
monthly and quarterly panels that replicate the availability of economic statistics at the last
day of each month. The vintage were designed to reflect the ragged-edge structure that
forecasters encounter in practice, closely mimicking the real-time informational inflow.
Monitoring economic activity in real-time implies nowcasting and forecasting multiple
times within the quarter, frequently updating the predictions to incorporate newly released
information. Given the monthly periodicity of the constructed vintages, this article assumes
that the forecaster tracks GDP progress on a monthly basis. This translates into three pre-
diction and update exercises for GDP nowcast and forecasts, each assumed to be conducted
at the end of each month. Table [3| provides an illustration of the real-time data inflow in-
volved in this process. Specifically, it presents the month-to-month evolution across three
consecutive vintages (January to March 2021) for four quarterly and four monthly indicators

from the two panels compiled for this study.

5 Out-Of-Sample Forecasting Setup

To compare the ML algorithms and the various information sets, the 219 monthly real-time
vintages, are utilized to perform two pseudo out-of-sample (POOS) evaluation experiments.
The first experiment replicates quarterly GDP monitoring, assuming GDP is tracked once

at each quarter, using only the vintages corresponding to the third month of the quarter

20https:/ /research.stlouisfed.org/econ /meccracken /fred-databases /.
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Table 3: Real-time Data Inflow in Monthly Vintages

GDPC1 OUTBS NWPIx AHETPIx MZMSL UNRATE CMRMTSPLx UMCSENTX
Vintage 31,/01/2021
30/09/2020 = 18597 118 683 22 21250 8 1564146 80
31/10/2020 - - - - - 7 1572500 82
30/11/2020 - - - - - 7 1569672 77
31/12/2020 - ; - 22 : 7 - 81
31/01/2021 - . - - - - - 79
28/02/2021 - - - - - - - -
31/03/2021 - - - - - - - -
Vintage 28/02/2021
30/09/2020 = 18597 118 683 22 21250 8 1564146 80
31/10/2020 - - - - 21369 7 1572500 82
30/11/2020 - - - - - 7 1569672 7
31/12/2020 - 120 - 22 - 7 - 81
31/01/2021 - - - - - 6 - 79
28/02/2021 - . - - - - - 7
31/03/2021 - ; - - : - - ;
Vintage 31/03/2021
30/09/2020 18597 118 683 22 21250 8 1564146 80
31/10/2020 - - - - 21369 7 1572500 82
30/11/2020 - . . - 21565 7 1569672 77
31/12/2020 18794 120 - 22 - 7 1566283 81
31/01/2021 - - - - - 6 - 79
98/02/2021 - . - - . 6 - 77
31/03/2021 - . ; : . ; - 85

NOTES: The table presents the real-time data inflow across three consecutive monthly vintages. Four quarterly variables
(including the target variable) and four monthly variables with varying release delays, have been selected. The highlighted
row marks the last available observation of the target variable (GDPC1) in each vintage. Observations below that row
correspond to leading information. The availability of leading information differs across vintages, with some months
offering timely data corresponding to one quarter ahead of GDP, and others two quarters ahead.
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(referred to hereafter as ‘EoM3,’ i.e., end-of-month 3), namely March, June, September, and
December. The second OOS evaluation exercise assumes that tracking of GDP occurs at
higher observation frequency by employing the full set of 219 month-end vintages, thereby
replicating monthly monitoring, where GDP nowcasts and forecasts are (re)calculated three
times per quarter. Out-of-sample nowcasts and forecasts are generated and evaluated for the
periods 2003:M01 to 2021:M03, encompassing 219 vintages for the monthly experiment, and
2003:Q1 to 2021:Q1, covering 73 vintages for the quarterly evaluation. Model performance
is compared for the nowcast and for forecasts up to four quarters ahead. Both out-of-
sample experiments are conducted using a rolling-window estimation approach. Regarding
the effective sample size, estimation of direct multi-step forecasting models is based on a
window of R; = 132 — h quarterly observations. For iterated specifications, the training
sample size does not depend on the forecast horizon, but varies with the number of lags
included in the model. Specifically, the window length for the AR(P) and BVAR(P) models
is given by R;; = 132 — P — 1, where P represents the number of lags.

The accuracy of point forecasts obtained from the two pseudo out-of-sample (POOS)
exercises is assessed using two error measures. First, the root mean squared error (RMSE)
is employed as the primary metric to compare the performance between different models
and alternative information sets. Second, to ensure the robustness of the results, the mean
absolute error (MAE) is reported alongside the RMSE, given its reduced sensitivity to large

forecast errors. The two error measures are defined as follows:

1 L
RMSE, , = |—— S &2 22
’ ’UT—’Uo—l-lvzvoev’"’m (22)

1 =
MAEnm:— Avnma 23
T e 23)

where €,n.m = Yo — Yvnm, a0d Yy nm 1S the n-quarters ahead prediction for GDP growth
computed in period v, obtained by model m. vy and vy represent the first and last vintages,
respectively, for which the n-quarters ahead predictions were generated in each pseudo out-
of-sample experiment. For the monthly evaluation, vy = 2003:M01 and vy = 2021:M03 — 3n,
while for the quarterly OOS experiment, which is based on the vintages of the 3rd month
of each quarter, vg = 2003:Q1 and vy = 2021:Q1 — nﬂ In the out-of-sample evaluation

that uses all the monthly vintages, since the target is observed at a quarterly frequency, the

21Given that the last realized GDP observation in the sample corresponds to 2021Q1, the number of
out-of-sample nowcasts and forecasts used to calculate RMSE and MAE in each OOS experiment depends
on the forecast horizon (n). Specifically, for the monthly out-of-sample evaluation, the metrics are calculated
over 219 — 3n predictions, while for the quarterly evaluation, they are based on 73 — n predictions.

34



monthly forecasts are evaluated against the same realized quarterly value. Consequently, the
forecast errors used in the calculation of the two error measures will share the same realized
GDP value for all months within the same quarter.

Evaluating and comparing the performance of multiple candidate models necessitates ad-
ditional testing procedures to facilitate comparisons and ascertain that observed differences
in predictive accuracy across models are statistically significant, in such settings. To elabo-
rate, in the quest for the best model, the empirical forecaster inevitably conducts repeated
searches over the same set of historical time-series data, raising the issue of ‘data snooping.’
This occurs when the repeated search leads to a statistically significant outperformance of a
single model that is solely the outcome of luck 2] The solution to data snooping turns to the
concept of ‘multiple-testing,” where the null hypothesis is formulated to involve all models
under consideration, rather than strictly focusing on a pair of models (White, |2000; |Hansen,
2005). A different approach to multiple testing advocated by Hansen et al.| (2011)) focuses on
constructing the set that contains the “best” model(s) with a given level of confidence (1—a),
allowing for the possibility that more than one models can be the “best” (i.e., statistically
indistinguishable from the best-performing model(s)). The set that contains the superior
models with equivalent performance is referred to as the ‘model confidence set’ (MCS) and
is denoted by M7 . To address the inherent multiple-testing problem, whenever possible,
I employ the MCS test to identify the subset of models whose performance is statistically
indistinguishable in each forecast horizon. The distribution of the test statistic for the MCS
is generated using a circular block bootstrap procedure with the number of resamples set to
1000, and the block length to 8. The significance level in the MCS test is set to a = 40%,
implying that the estimated model confidence set, M, contains the true superior models
(i.e., it is the true MCS) with at least 60% probability.

6 Results

6.1 Baseline Models

Tables 4] and [5] present the performance of the models drawn from the 13 distinct ma-
chine learning model classes trained using the quarterly information set D1, along with the
Bayesian VARs, the standard and target ARDI models, and the univariate benchmarks.
The figures reported in Tables 4| and [5| correspond to RMSE and MAE ratios, respectively,
relative to the AR(1) benchmark, derived from the quarterly OOS evaluation based on the

22Data snooping arises even when attempting to improve upon the most promising techniques identified
in previous research conducted on the same dataset. As|Abu-Mostafa et al. (2012, p. 175) put it, “Although
you haven’t even seen the data yet, you are already guilty of data snooping.”
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73 vintages spanning the period from Mar-2003 to Mar-2021. Specifically, each table shows
the error metrics for the n-quarters-ahead predictions (with n = 0 denoting the nowcast),
along with the average relative error across all five horizons, displayed in column 6. Cells
highlighted in grey indicate the models included in the 60% MCS for each horizon, com-
puted based on the quadratic and absolute losses, in Tables [4] and [5] respectively. The final
column in both tables shows the average p-value of the MCS test over the five horizons.
Higher p-values signify weaker evidence of inferior predictive performance relative to other
models in the set. Consequently, models with higher MCS p-values are stronger candidates.
Bold entries in columns 1 to 6 denote the models with the lowest relative error for each step
horizon and on average, while the bold figure in the last column corresponds to the largest
average MCS p-value across models. To provide a sense of the magnitude of forecast errors,
the absolute RMSE and MAE values are reported for the AR(1) model. Finally, note that
all models presented in the tables of this subsection have been estimated only using quar-
terly data, with the exception of the sg-LASSO, which was trained on the mixed-frequency
Legendre-aggregated set D3, following the recommendation of Babii et al| (2022).

I start with a sanity check, confirming that key results in the two tables align with
findings from past studies. For instance, block-wise boosting outperforms its component-wise
counterpart both overall and across individual horizons, consistent with Bai and Ng| (2009)).
Similarly, the BVAR with the flexible covariance structure outperforms its homoscedastic
counterpart, corroborating evidence from multiple studies (e.g., (Carriero et al., 2016; Chanl,
2020). Additionally, incorporating a pre-selection step prior to factor extraction improves
the performance of standard diffusion index models, as suggested in Bai and Ng (2008)).
Notably, all these findings are robust to the choice of error criterion, whether RMSE or
MAE is used. Shifting attention to the univariate benchmarks, the AR(1) emerges as the
strongest candidate among the autoregressive specifications. However, assuming that GDP
in log-levels follows a random walk process provides a significant improvement in predicting
GDP growth compared to the rest univariate models, particularly for the nowcast and the
first two quarters ahead forecasts. The strong performance of the RW model relative to
other univariate specifications (and more broadly) aligns with the findings of D’Agostino
et al.| (2007)), whose conclusions remain relevant today. This outcome is largely attributable
to the fact that U.S. output growth has remained relatively stable throughout most of the
post-1985 era, with the exception of two major episodes: the 2007-08 financial crisis, and
the 2020 economic disruption caused by the COVID-19 pandemic.

Turning to the comparative performance between models, when the objective is to now-
cast, boosting diffusion indices with a linear base procedure and block-wise treatment for

incorporating factor dynamics, outperforms all other ML candidates and benchmarks, achiev-

36



ing a 40% reduction in RMSE relative to the AR(1) and 19% relative to the RW. Follow-
ing closely in terms of nowcasting performance is the class of ARDI models, with the sin-
gle targeted-factor ARDI model exhibiting an RMSE only marginally smaller than that of
BBoost-D1F. While when predicting the current quarter, all ML methods, except adaLLASSO,
LSTM, and sg-LASSO, produce more precise estimates compared to the RW; however, when
forecasting the next quarter, the majority of models including standard benchmarks find it
challenging to beat the RW, with only a few exceptions of ML algorithmsf¥ Specifically,
for n =1 only 7 out of the 20 non-univariate models manage to outperform the RW. When
forecasting two quarters ahead, most models achieve similar accuracy, with only the elas-
tic net, the linear bagging ensemble, and the ridge regression delivering somewhat more
accurate forecasts. Beyond the 2-quarters-ahead prediction, the majority of models are at
most as accurate as the AR(1) benchmark and the rolling 30-year average growth rate, with
almost none achieving a ratio smaller than one.This finding is supported by the fact that
the same pattern is observed across both error metrics and also because most models are
included in the MCS, indicating statistically indistinguishable predictive accuracy. Examin-
ing the across-horizon statistics, the block boosting and ridge regression models achieve the
best and second-best performance, respectively, in terms of both average 5-horizon RMSE
and average MCS p-value. Similar observations emerge when comparing model performance
using the MAE criterion. While block boosting displays somewhat higher MAE compared
to its relative performance as captured by the RMSE, it nevertheless maintains its status
as the best performer in terms of average 5-horizon performance and average MCS p-value.
The models in the ARDI class also demonstrate notable and consistent performance, with
the single-factor target ARDI achieving the lowest MAE for the nowcast horizon, and the
two-factor target ARDI delivering the second lowest average MAE, and the second highest
MCS p-value.

The comparative performance results presented in Tables [4] and [5] indicate that machine
learning methods, when combined with a large set of covariates held at the same frequency
with the target variable, offer notable gains in predicting both current and future GDP

growth compared to standard benchmarks and state-of-the-art models. While the primary

230ne possible explanation for the poor performance of the sg-LASSO is that predictive relationships are
not adequately captured by sparse representations. This hypothesis is in line with the evidence presented in
Giannone et al.| (2021) who studied the relevance of sparsity across several economic prediction problems.
This is also supported by the observation that several best-performing specifications correspond to models
that do not enforce sparsity, including the factor-boosting model. To give an idea of the degree of sparsity
imposed by sg-LASSO, Appendix [B] presents sparsity patterns for different sparsity-inducing algorithms. A
comparison between the variables selected by sg-LASSO-MIDAS (Fig. @) and those selected by applying
hard-thresholding preselection on information set D3 (Fig. |8 reveals a significant reduction in the relative
number of predictors included in sg-LASSO.
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gains of utilizing machine learning are observed mainly in nowcasting, some benefits also

extend to short-term forecasting up to two quarters ahead.

6.2 Horse Race: The full picture

In this section I turn to assess the potential gains in forecasting accuracy coming from two
modifications: (1) the different schemes for incorporating predictors sampled at different fre-
quencies, and (2) forming parsimonious ML specifications using a reduced set of predictors
comprised of only factors on the RHS. The various components and algorithms are combined
in an extended horse race which ranks the performance of all specifications resulting from
combining the distinct ML methodologies with the three information sets D1, D2, and D3
that correspond to alternative methods for handling the mixed-frequency nature of the setup,
along with their factor-only counterparts, denoted D1F, D2F, and D3F. A total of six infor-
mation sets are formed which are then combined with the 13 ML algorithms examined in this
article. The combined ML specifications together with the standard econometric techniques
and workhorse benchmarks considered herein, result in a ranking containing a total of 85
specifications. The full set of models is evaluated in two out-of-sample experiments. The
first assumes that monitoring of economic activity occurs once at the end of each quarter,
while the second considers tracking GDP at a monthly frequency, i.e., three times within the

quarter.

6.2.1 Real-Time Quarterly Monitoring

Tables 6] and [7] present the 20 best performing specifications ranked according to their average
relative RMSE and MAE, respectively, derived from the horse race based on the out-of-
sample evaluation that utilises the real-time quarter-end vintages. Models have been ranked
with respect to column labelled ‘avg’, which corresponds to the average relative error over
all five horizonsP¥ In order to retain conciseness, the tables present the 20 models most
relevant to each ranking, corresponding to approximately the upper 25% distribution of
models. Nevertheless, the analysis in this section also draws conclusions based on the full
rankings, which are available upon request. For brevity, in what follows, parentheses are used
in the notation of the information sets to collectively refer to any of the three information

sets and its factor-only counterpart. For example, D1(F) denotes both D1 and D1F.

24Since the tables rank models based on their 5-horizon average performance, bold entries may be absent
in some columns. This occurs because the best-performing specification might appear further down the
ranking. For example, the models with the lowest RMSEs for the 2- and 4-quarter ahead forecasts are not
included in the condensed ranking shown in Table @
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Table 4: Forecasting Errors: RMSE, Mar-2003 to Mar-2021

Models n=0 n=1 n=2 n=3 n=4 avg avgMCS
AR(1) 208 173 168 158 1.59 - 0.55
AR(4) 1.06 1.04 1.01 1.00 1.00 1.02 0.52
AR(BIC) 1.00 1.01 1.00 1.00 1.00 1.00 0.49
AR(CV) 1.03 1.01 1.00 1.00 1.00 1.01 0.45
RW 0.74 090 093 1.00 1.00 0.92 0.55
ARDI(1) 0.62 094 093 1.00 1.00 0.90 0.56
ARDI(2) 0.64 094 093 1.00 1.00 0.90 0.56
T.ARDI(1) 0.60 096 093 1.00 1.00 0.90 0.56
T.ARDI(2) 0.61 091 093 1.00 0.99 0.89 0.57
BVAR-Minn | 0.70 0.95 0.93 1.00 1.02 0.92 0.52
BVAR-CSV  0.65 091 093 1.01 101 0.90 0.43
BBoost-D1F  0.60 0.88 0.93  1.00 1.00 0.88 0.78
CBoost-D1F [ 0.66 0.89 0.93 ' 1.02 1.00 0.90 0.46
CSR-D1 0.66 092 093 1.01 1.01 0.91 0.43
Bag-D1 0.69 090 091 099 1.00 0.90 0.66
BTree-D1 0.72 090 094 1.01 1.03 0.92 0.31
RF-D1 0.69 090 093 1.00 1.00 0.91 0.48
SVR-D1 0.73 090 092 0.99 0.99 0.91 0.63
Ridge-D1 0.66 091 091 1.00 1.00 0.89 0.67
LASSO-D1 0.67 098 092 1.10 1.07 0.95 0.19
AdaLASSO-D1 = 0.77 0.92 098 1.06 1.01 0.95 0.26
EN-D1 0.68 090 0.88 1.05 1.04 0.91 0.43
AdaEN-D1 0.73 091 094 1.01 1.00 0.92 0.46
LSTM-D1 0.76 091 094 1.00 1.02 0.93 0.48
SgLASSO-D3  0.75 091 093 1.00 1.00 0.92 0.40

NOTES: The table reports the relative RMSE for the n-steps ahead prediction,
with n = 0 reflecting the nowcast. Evaluation exercise conducted as if predictions
were calculated every end of the 3rd month of each quarter. The average relative
RMSE over all horizons is also given. The last column reports the average p-value
of the model confidence set (MCS) test, proposed by [Hansen et al.| (2011]), over all
horizons and for squared losses. Highlighted cells denote the models that belong to
the 60% MCS (i.e. the set of superior models with equal performance). A small
p-value suggests that the row model is unlikely to be a member of the MCS. Error
measures are reported relative to the AR(1), while for the AR(1) benchmark the
absolute RMSEs are given. Figures in bold show the model with the best statistic,
that is, lowest relative error measure, and largest average MCS p-value.
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Table 5: Forecasting Errors: MAE, Mar-2003 to Mar-2021

Models n=0 n=1 n=2 n=3 n=4 avg avgMCS
AR(1) 0.74 072 071 0.66 0.66 - 0.42
AR(4) 1.11 1.04 1.01 1.01 1.00 1.03 0.46
AR(BIC) 1.00 1.01 1.01 '1.01 1.00 1.01 0.42
AR(CV) 1.06 1.01 1.00 ' 1.01 1.00 1.02 0.45
RW 0.87 090 092 0.99 1.00 0.94 0.69
ARDI(1) 0.80 093 092 1.00 1.00 0.93 0.62
ARDI(2) 0.79 093 094 1.02 1.00 0.93 0.58
T.ARDI(1) 0.75 094 093 1.01 1.06 0.94 0.68
T.ARDI(2) 0.78 0.87 091 1.01 1.00 0.91 0.71
BVAR-Minn | 0.80 1.01 ' 0.94 1.05 1.10 0.98 0.65
BVAR-CSV  0.76 093 097 1.05 1.09 0.96 0.52
BBoost-D1F | 0.78 0.81 093 1.01 1.01 0.91 0.79
CBoost-D1F | 0.80 0.87 0.95  1.06 1.01 094 0.51
CSR-D1 0.75 093 098 1.05 1.08 0.96 0.52
Bag-D1 0.77 087 0.90 1.02 1.06 0.93 0.68
BTree-D1 0.85 095 1.00 1.04 1.13 1.00 0.21
RF-D1 0.78 090 093 1.02 1.02 0.93 0.60
SVR-D1 0.85 091 092 1.00 1.01 0.94 0.56
Ridge-D1 0.78 097 096 1.10 1.14 0.99 0.31
LASSO-D1 0.76 126 1.16 138 1.27 1.17 0.20
AdaLASSO-D1 090 1.02 1.13 1.18 1.09 1.06 0.11
EN-D1 0.77 087 098 1.19 1.13 0.99 0.27
AdaEN-D1 0.79 088 096 1.05 1.00 0.94 0.51
LSTM-D1 092 095 1.02  1.09 1.09 1.02 0.33
SgLASSO-D3 091 095 094 1.02 1.02 0.97 0.47

NOTES: The table reports the relative MAE for the n-steps ahead prediction, with
n = 0 reflecting the nowcast. Evaluation exercise conducted as if predictions were
calculated every end of the 3rd month of each quarter. The average relative MAE

over all horizons is also given.

The last column reports the average p-value of

the model confidence set (MCS) test, proposed by Hansen et al.| (2011)), over all
horizons and for absolute losses. Highlighted cells denote the models that belong
to the 60% MCS (i.e. the set of superior models with equal performance). A small
p-value suggests that the row model is unlikely to be a member of the MCS. Error
measures are reported relative to the AR(1), while for the AR(1) benchmark the
absolute MAEs are given. Figures in bold show the model with the best statistic,
that is, lowest relative error measure, and largest average MCS p-value.

40



Starting with the ranking based on the average RMSE, at the top of the list is the
block-wise boosting algorithm trained on the set of quarterly factors, D1F. The BBoost-
D1F specification ranks first based on its 5-horizon average performance, achieves the lowest
RMSE both for the nowcast and the 1-quarter ahead forecast, and holds the second largest
MCS p-value among the 85 models, all of which collectively underscore its strong perfor-
mance. Overall, within the first 20 specifications that deliver the lowest forecast errors over
the 5 horizons, there is a significance presence of linear ML methodologies. Specifically, 16
out of the 20 best performers involve some form of dynamic linear regression model such as
factor-augmented ARs, bagging of linear regressions, ridge regressions, CSR, LASSO, EN
and the LASSO/EN adaptive variants. With the exception of the two L2 boosting algorithms
that are based on linear base procedures, only two of the remaining specifications that make
it to the condensed ranking with the 20 best performers, correspond to nonlinear ML models.
The two specifications are boosting trees and random forests, and are found at the bottom of
the list, as they rank 19th and 20th, respectively. Examining the representation of different
information sets in the top 25% of models ranked by 5-horizon average RMSE, the majority
of models are trained on the quarterly factor, D1F. Specifically, 13 models, including the 4
ARDI specifications, are trained on D1F, 2 on D1, and 3 on D2, while the remaining two
models in the top 20 each corresponds to a linear bagging specification, one trained on D2F
and the other on D3. Moreover, reviewing the full ranking, the constant growth model is
found on the 44th position, while the two Bayesian VAR alternatives, the common stochastic
volatility and the homoscedastic VAR, rank 22nd and 49th, respectively. It is noteworthy
that the BVAR-CSV makes it among the top 10 specifications when models are ranked by
their nowcasting performance, instead of the 5-horizons average.

Turning to the top quartile of models as ranked in Tables[7|and ?? that present the rank-
ing with respect to MAE alternative, one notable observation is that the prediction given by
the constant growth model, goes from the 44th position in the previous ranking, up to the
21st position. This comparative improvement of the RW model (relative to models with sim-
ilar RMSE values) aligns with expectations for two reasons. First, the rolling average serves
as a reasonable proxy for future growth under normal economic conditions, which is what
prevails during the majority of times covered in our OOS experiment. Second, while aver-
age growth generally provides a poor approximation near peaks or troughs when economies
are experiencing periods of heightened growth or contraction, the MAE criterion does not
penalize those large forecasts errors more heavily, unlike RMSE. Nevertheless, in terms of
the structure of the top performing algorithms and information sets when using the MAE
alternative, a similar picture emerges to that observed in the RMSE ranking. The strong

presence of linear models among the top 20 specifications persists, with 13 specifications cor-
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responding to linear models, and the remaining 7 specifications to nonlinear ML algorithms.
The composition of models is also similar to that observed in Table[6] with the linear models
found in the top quartile representing the following model classes: diffusion index models
with and without target-factors, linear bagging, and different types of penalized regressions.
Among the nonlinear models, the least-squares block boosting algorithm consistently ranks
among the top performers, delivering the 2nd best performance based on average MAE, as
well as the 5th smallest nowcast error, and the 5th largest MCS p-value. Additionally, RF
and SVR are also present, with 5 out of the 7 nonlinear specifications corresponding to the
RF algorithm trained on different information sets. Given that the random forest algorithm
only appears in the top quartile in the MAE ranking, it is worth noting that this could be
attributed to a few isolated large errors disproportionately affecting its RMSE performance,
rather than indicating a general inability of the algorithm to provide reliable predictions.
Regarding the frequency with which different information sets appear in the quartile with
the best performers, as captured by the 5-horizon average MAE, 12 models are trained on
D1(F), including the 4 ARDI models all of which make it to the top 25%, 5 are trained on
D2(F), and 3 on D3(F). Excluding the 4 ARDI specifications, 7 of the 20 top performers are
trained on factor-only information sets, with 5 of those corresponding to D1F. The frequent
appearance of D1F among the top-performing specifications across both RMSE and MAE
rankings, almost irrespective of the algorithm used, underscores the effectiveness of relying
exclusively on quarterly factors derived from the temporal aggregation of predictors in large
mixed-frequency datasets. This consistency highlights D1F as a preferred information set,
delivering robust performance across multiple machine learning approaches. Finally, the
BVAR model that allows for heteroscedasticity ranks 43rd in the MAE-ordered list but rises
to 6th place when models are ranked in terms of their nowcasting performance.

Figure [3] presents a scatter plot summarizing the results of the horse race by combining
the two error measures previously reported in the tables of this section. Each point illus-
trates the average performance of a model across the five horizons, with the x-axis showing
the average MAE ratio and the y-axis showing the average RMSE ratio, both relative to the
AR(1) benchmark. Lower values on both axes indicate better performance, making models
closer to the origin the stronger candidates according to both metrics.E] The models are
categorized by the information set used for training, into D1(F), D2(F), D3(F), and Other,
with each represented by a distinct colour. The ’Other’ category (depicted as red dots) is
reserved for the standard econometric models and benchmarks (i.e., ARs, ARDIs, BVARs,

25The upper bounds of the axes are restricted to display only the most relevant models out of the 85
evaluated. Specifically, the plot shows models that lie within one standard deviation from the median of the
averaged RMSE and MAE ratios.
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and the RW). While ARDI models could be associated with D1(F), they are nevertheless
based on fewer factors than those included in D1F, which contains the full set of optimally
selected factors. For this reason, they are classified within the general 'Other’ category.
Overall, the figure reinforces the key insight from the analysis thus far: machine learn-
ing models outperform standard workhorse econometric models, including state-of-the-art
BVARs. Moreover, ARDI models estimated on quarterly data remain competitive, serving
as reliable baselines against which the additional complexity of machine learning algorithms
and alternative information sets should be evaluated. The concentration of blue and red
dots positioned closest to the origin highlights the effectiveness of temporally aggregating
predictors as a robust technique for handling mixed-frequency data, performing well with
various algorithms. Meanwhile, the green dots concentrated toward the middle of the plot
suggest that incorporating high-frequency lags in an unrestricted manner serves as a viable
alternative technique. In contrast, models trained on D3 and its variation (e.g., D3F) are
more dispersed toward higher RMSE and MAE values, indicating weaker predictive perfor-
mance. Focusing on the bottom-left corner of the plot, a distinct cluster of models, that
stand apart from the majority of other candidates, emerges. The group of models within the
region bounded approximately by a horizontal line at 0.9 on the y-axis and a vertical line at
0.935 on the x-axis represent the models with the best performance taking a balanced view
considering both average RMSE and average MAE. Examining the composition of specifi-
cations within the rectangular region, several key observations emerge. First, BBoost-D1F
consistently outperforms other models, achieving superior performance across both error
measures with a strong margin. Additionally, the two ARDI models with targeted predic-
tors deliver strong results, particularly T.ARDI(2), which excels in both MAE and RMSE
metrics. Linear bagging-based models also demonstrate robust and consistent performance
across both measures and for most information sets. Notably, all Bag-D1, Bag-D2, Bag-D3,
and Bag-D1F models are positioned close to the origin, highlighting the efficacy of linear
ensemble methods for nowcasting and forecasting macroeconomic aggregates. Additionally,
reclassifying ARDI models within the D1(F) category, the vast majority of models in the
rectangular region containing the top performers is based on the quarterly information set
D1(F). This, once again, underscores the effectiveness of D1(F) as a reliable information set
for achieving superior predictive accuracy.

Finally, it is noteworthy that while machine learning algorithms are inherently capable of
handling high-dimensional datasets, the robust and consistent performance of linear bagging
models, that are built on a parsimonious base learner using only a handful of predictors,
suggests that parsimony may play a crucial role in model success. Similarly, the strong

results of other algorithms relying on information sets with fewer predictors, such as ARDIs
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and boosted-ARDIs as well as the majority of models trained on factor-only set D1F found at
the top of both rankings, further emphasize the importance of simplicity as a key ingredient
for reliable forecasting performance across horizons and metrics. While this outcome could
potentially be attributed to the limited sample size associated with the target variable under

consideration; however, further investigation is necessary to validate this hypothesis.
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Figure 3: Forecasting performance of all models by information set category: D1(F), D2(F),
D3(F), and Other. Evaluation exercise replicating quarterly monitoring using end-of-quarter
vintages. The axes show average relative RMSE and MAE achieved by each model over all
horizons. Error measures are relative the AR(1) benchmark. The dashed lines represent the
boundaries of the upper quartile (enclosing the top 20 models) for each error metric.

6.2.2 Real-Time High-Frequency Monitoring

Tables [§ and [J] present the condensed rankings from the horse race for the monthly out-of-

sample evaluation experiment, based on the 219 vintages spanning the period from Jan-2003
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Table 6: Forecasting Errors: RMSE, 20 Best Performing Models, Mar-
2003 to Mar-2021

Models n=0 n=1 n=2 n=3 n=4 avg avgMCS

BBoost-DIF | 0.60 0.88 0.93 ' 1.00 1.00 0.88  0.72
T.ARDI(2) 061 091 093 1.00 099 089  0.64

Bag-D1F 0.62 090 093 1.00 1.00 0.89 0.53
Ridge-D2 0.62 091 093 1.00 1.00 0.89 0.42
Ridge-D1 0.66 091 091 1.00 1.00 0.89 0.70
Bag-D3 0.62 092 093 1.01 1.00 0.89 0.50
T.ARDI(1) 0.60 096 0.93  1.00 1.00 0.90 0.59
Bag-D1 0.69 090 091 099 1.00 0.90 0.75
CSR-D2 0.62 092 095 1.00 1.01 0.90 0.53
Bag-D2 0.66 092 092 099 1.00 0.90 0.53
ARDI(1) 0.62 094 093 1.00 1.00 0.90 0.46
AdaLASSO-D1F @ 0.64 091 0.94 1.00 1.00 0.90 0.48
Bag-D2F 0.69 0.89 0.92 0.99 0.99 0.90 0.61

LASSO-D1F 0.65 091 094  1.00 1.00 0.90 0.43
AdaEN-D1F 0.65 091 094 1.00 1.00 0.90 0.43

EN-D1F 0.6 091 094 1.00 1.00 0.90 0.43
CBoost-D1F 0.66 0.89 093 1.02 1.00 0.90 0.44
ARDI(2) 0.64 094 093 1.00 1.00 0.90 0.50
BTree-D1F 0.67 090 091 1.01 1.01 0.90 0.56
RF-D1F 0.70 090 0.92 1.00 0.99 0.90 0.61

NOTES: The table reports the relative RMSE for the n-steps ahead prediction,
with n=0 reflecting the nowcast. Evaluation exercise conducted as if predictions
were calculated every end of the 3rd month of each quarter. The average relative
RMSE over all horizons is also given. The last column reports the average p-value
of the model confidence set (MCS) test, proposed by [Hansen et al.| (2011)), over all
horizons and for squared losses. Highlighted cells denote the models that belong to
the 60% MCS (i.e. the set of superior models with equal performance). A small
p-value suggests that the row model is unlikely to be a member of the MCS. Error
measures are reported relative to the AR(1). The models have been ranked wrt the
average relative error measure over the 5 different forecasting horizons considered.
Figures in bold show the model with the best statistic, that is, lowest relative error
measure, and largest average MCS p-value. Model names ending in F' contain only
factors on the RHS. The full ranking containing all the premutations of models and
transformations, can be found in the appendix.
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Table 7: Forecasting Errors: MAE, 20 Best Performing Models,
Mar-2003 to Mar-2021

Models n=0 n=1 n=2 n=3 n=4 avg avgMCS

Bag-D2 [0.72° 0.8 [0.89 1.00 1.01 0.90 0.78
BBoost-DIF =~ 0.78 0.81 093 1.01 101 091  0.59
T.ARDI(2) 078 087 091 101 1.000 091  0.70
RF-D3  0.79 090 092 099 100 092  0.62
RF-DIF 080 0.89 ' 0.92 1.00 099 092  0.59
RF-D2F 082 090 ' 093 1.00 0.98 092 051
Bag-D1 077 087 1090 1.02 1.06 093 0.4
Bag-DIF 077 0.88 092 1.02 104 093 048
Bag-D3  0.72 089 094 105 1.04 093 045
RF-DI  0.78 090 093 1.02° 1.02 093  0.30
LASSO-DIF 0.79 0.89 0.96 1.01 100 093  0.36
SVR-D2 084 090 (092 100 1.00 093  0.56
ARDI(1) 080 0.93 (092 1.00 1.00 093  0.58
RF-D2 081 090 094 1.01 100 093 041
EN-D3  0.82 092 093 100 1.00 093  0.59
Ridge-D2F  0.80 0.86 091 1.03 1.07 093  0.37
EN-DIF 080 0.89 097 1.01 1.000 093  0.38
ARDI(2) 079 093 [004 102 1.00 093 043
AdaEN-D1 [0.79 088 096 105 1.00 094  0.52
T.ARDI(1) 075 094 093 10l 1.06 094 057

NOTES: The table reports the relative MAE for the n-steps ahead prediction,
with n=0 reflecting the nowcast. Evaluation exercise conducted as if predictions
were calculated every end of the 3rd month of each quarter. The average relative
MAE over all horizons is also given. The last column reports the average p-value
of the model confidence set (MCS) test, proposed by Hansen et al.|(2011), over
all horizons and for absolute losses. Highlighted cells denote the models that
belong to the 60% MCS (i.e. the set of superior models with equal performance).
A small p-value suggests that the row model is unlikely to be a member of the
MCS. Error measures are reported relative to the AR(1). The models have been
ranked wrt the average relative error measure over the 5 different forecasting
horizons considered. Figures in bold show the model with the best statistic, that
is, lowest relative error measure, and largest average MCS p-value. Model names
ending in F' contain only factors on the RHS. The full ranking containing all
the combinations of models and transformations, can be found in the appendix.
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to Mar-2021. The first table reports the results using the RMSE criterion, while the second
presents the ranking based on the MAE alternative. Tables[§ and [ share the same structure
as those in the previous subsection but include one fewer column. Specifically, the last
column in Tables [6] and [7] which reports the average MCS p-value, is omitted in the tables
herein because the series of forecast errors for each of the n-quarter-ahead predictions in the
monthly OOS experiment pools forecasts is derived from different horizons (h-steps ahead),
rendering the standard MCS procedure inapplicable.

The key takeaways from these tables are summarized as follows. (1) Whereas in the quar-
terly out-of-sample evaluation all four ARDI specifications made it to the upper quartile in
both the RMSE and MAE rankings, in the monthly evaluation exercise, only a single ARDI
specification reaches the quartile of top-performing models. Specifically, the ARDI model
estimated using the first two targeted-factors achieves the 8th smallest average 5-horizon
RMSE, while the standard ARDI(1) is found in the 6th position when model performance is
assessed in terms of the 5-horizon average MAE. This finding suggests that although ARDI
remains a strong candidate for nowcasting and short-term forecasting of GDP growth, it
nevertheless is less effective at capturing useful within-quarter signals compared to other
models. (2) Both rankings reveal a strong presence of linear algorithms, particularly bag-
ging and various regularized regression methods. However, certain algorithms dominate
specific rankings, with ridge regressions appearing exclusively among the 20 top performers
in the RMSE list, whereas random forests primarily observed in the MAE ranking, with only
a few instances in the RMSE list. (3) There is an overall increased representation of D2(F)
and D3(F) in the upper quartile, while the presence of top performing specifications trained
exclusively on factors is less pronounced, implying that adding individual X’s provides ad-
ditional gains when the forecaster tracks GDP growth earlier in the quarter (as opposed to
when only tracking at the end of the quarter, as is the case in the quarterly OOS evaluation).
Specifically, in the upper 25% of the RMSE ranking, 12 specifications were trained on D1(F),
including T.ARDI(2), 5 on D2(F), and 3 on D3(F), with half of the top-ranked specifications
corresponding to factor-only information sets. Similarly, in the upper quartile of the MAE
ranking, 9 specifications were trained on D1(F), including ARDI(1), 7 on D2(F), and 3 on
D3(F). Moreover, regarding the inclusion of individual series, 10 specifications correspond
to factor-only information sets, and 9 to composite sets, with the remaining spot occupied
by the RW, which makes it to the upper quartile under the MAE criterion in the monthly
OOS evaluation. (4) Examining Figure , which combines the two error metrics, reveals
that training linear ensemble methods such as bagging and CSR with information sets that
incorporate the lagged terms of high frequency variables and/or factors in an unrestricted

manner is a highly effective device for tracking GDP growth on a monthly basis, consistently
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outperforming other ML candidates and standard benchmarks. This finding, drawn from
the figure illustrating the horse race with the combined metrics, reiterates and reinforces
the two earlier takeaways observed from analysing the two rankings separately. (5) Finally,
the BBoost-D1F specification stands out as a strong performer, particularly for nowcasting
GDP. Among the 85 models evaluated, it ranks 3rd in the RMSE ranking for average 5-
horizon errors and 2nd for nowcasting. While slightly less dominant in the MAE ranking,
it still ranks 5th for nowcasting and 13th for the average 5-horizon MAE, placing it com-
fortably within the top quartile of models. These results position BBoost-D1F firmly within
the top-performing models, highlighting its strong predictive capability across metrics and
horizons.

The findings from the horse race in the monthly out-of-sample evaluation align closely
with those of the standard quarterly-frequency OOS experiment. This consistency under-
scores the robustness of the top-performing candidates and confirms that the leading algo-
rithms and information sets are equally effective for tracking GDP at a monthly, and possibly

even higher, observational frequencies.

7 Conclusion

The findings of this study reveal that ML, methods can produce more accurate nowcasts and
short-term forecasts of GDP growth rates compared to numerous commonly used bench-
marks. In terms of the components that make the successful combination, it is challenging
to find unanimity when the set of competing models is extensive and multiple horizons are
considered. Examining the full ranking from the comprehensive evaluation of all 85 candi-
date models provides crucial insights. As evidenced by the horse race results, the L2 boosting
algorithm with a linear base procedure, estimated on the set of quarterly factors extracted
from the full set of predictors and incorporating lags using the block-wise approach of Bai
and Ng (2009), consistently ranks among the top performers, both overall and particularly
for nowcasting. Repeatedly updating the prediction using the variables that at each itera-
tion best fit the remaining errors (updated residuals), seems to provide a promising route
for approximating the conditional expectation of the target. Overall, the upper quartile of
the models’ performance distribution, as captured by the RMSE, is marked by a significant
presence of linear ML methodologies. Out of the 20 best performers, 16 specifications involve
some form of a linear regression model: factor-augmented ARs, Ridge Regressions, Bagged
Linear Regressions, CSR, LASSO, EN and the LASSO/EN adaptive variants. When ranking
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Table 8: Forecasting Errors: RMSE, 20 Best Performing
Models, Monthly OOS Evaluation over Jan-2003 to Mar-
2021

Models n=0 n=1 n=2 n=3 n=4 avg
Bag-D3 0.73 093 097 1.00 0.99 0.92
CSR-D2 0.71 094 098 1.00 1.00 0.93
BBoost-D1F 0.72 092 098 1.01 1.00 0.93
Bag-D2F 0.77 091 097 0.99 1.00 0.93

Ridge-D1 0.76 092 096 1.00 1.00 0.93
Ridge-D2 0.74 093 097 1.00 1.00 0.93

Bag-D2 0.77 092 097 099 1.00 0.93
T.ARDI(2) 0.75 093 098 1.00 1.01 0.93
Bag-D1F 0.76 0.93 097 1.00 1.00 0.93
Bag-D1 0.78 0.92 096 1.00 1.00 0.93
CSR-D1 0.76 093 097 1.00 1.01 094
Ridge-D3 0.79 092 097 1.00 1.00 0.94
RF-D1F 082 092 097 1.00 0.99 094

Ridge-D2F 0.81 091 097 1.00 1.00 0.94
CBoost-D1F 0.77 093 098 1.01 1.00 0.94
SVR-D1 082 092 096 099 1.00 0.94
LASSO-D1F 0.79 093 098 1.00 1.00 0.94
AdaLASSO-D1F 0.78 0.94 0.98 1.00 1.00 0.94
RF-D1 0.80 0.92 097 1.00 1.00 0.94
Bag-D3F 082 092 097 1.00 0.99 094

NOTES: The table reports the relative RMSE for the n-steps ahead
prediction, with n = 0 reflecting the nowcast. Evaluation exercise
conducted in a real-time fashion, updating the predictions at the end
of every month. The average relative RMSE over all horizons is also
given. Since in the real-time POOS evaluation each of the forecasts
comes from different h-steps ahead predictions (i.e. for Jan & Feb the
nowcast, n = 0, comes from setting h = 2, while in Mar from h = 1),
I abstract from conducting MCS testing, as it is primarily suited for
single-horizon forecast errors. Error measures are reported relative to
the AR(1). The models have been ranked wrt the average relative error
measure over the 5 different forecasting horizons considered. Figures
in bold show the model with the lowest relative error measure. Model
names ending in F' contain only factors on the RHS. The full ranking
containing all the combinations of models and transformations, can be
found in the appendix.
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Table 9: Forecasting Errors: MAE, 20 Best Performing
Models, Monthly OOS Evaluation over Jan-2003 to Mar-
2021

Models n=0 n=1 n=2 n=3 n=4 avg

Bag-D2 0.77 089 096 1.01 1.04 0.94
RF-D1F 0.86 091 097 0.99 1.00 0.95
RF-D3 084 093 0.96 099 1.02 0.95
Bag-D3 0.77 091 099 1.03 1.03 0.95
RF-D2F 087 093 097 1.00 0.99 0.95
ARDI(1) 086 0.92 097 099 1.00 0.95
SVR-D2 087 091 097 1.00 1.01 095
Bag-D1 081 090 097 1.03 1.05 0.95
RF-D1 0.84 092 097 1.01 1.02 0.95
RW 089 092 097 099 1.00 0.95
RF-D2 085 092 097 1.01 1.01 095
EN-D2F 088 093 097 1.00 1.00 0.95
BBoost-D1F 0.81 0.92 0.99 1.04 1.02 0.96
BBoost-D2F 093 0.90 096 1.00 1.01 0.96
EN-D3 090 092 097 1.00 1.00 0.96
CSR-D1F  0.88 091 097 1.01 1.02 0.96
SVR-D1 088 092 097 1.01 1.02 0.96
LASSO-D2F 091 0.93 097 1.00 0.99 0.96
LASSO-D1F 0.85 0.93 1.00 1.02 1.00 0.96
EN-D1F 085 093 099 1.01 1.01 0.96

NOTES: The table reports the relative MAE for the n-steps ahead
prediction, with n=0 reflecting the nowcast. Evaluation exercise
conducted in a real-time fashion, updating the predictions at the
end of every month. The average relative MAE over all horizons
is also given. Since in the real-time POOS evaluation each of the
forecasts comes from different h-steps ahead predictions (i.e. for
Jan & Feb the nowcast, n = 0, comes from setting h = 2, while
in Mar from h = 1), I abstract from conducting MCS testing,
as it is primarily suited for single-horizon forecast errors. Error
measures are reported relative to the AR(1). The models have been
ranked wrt the average relative error measure over the 5 different
forecasting horizons considered. Figures in bold show the model
with the lowest relative error measure. Model names ending in F
contain only factors on the RHS. The full ranking containing all
the combinations of models and transformations, can be found in
the appendix.
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Figure 4: Forecasting performance of all models by information set category: D1(F), D2(F),
D3(F), and Other. Evaluation exercise replicating monthly monitoring using end-of-month
vintages. The axes show average relative RMSE and MAE achieved by each model over all
horizons. Error measures are relative to the AR(1) benchmark. The dashed lines represent
the boundaries of the upper quartile (enclosing the top 20 models) for each error metric.
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model performance with the MAE alternative, which is less sensitive to large forecast errors,
a similar picture emerges. However, the number of nonlinear models making it to the top
quartile increases considerably, with the majority of the new entries corresponding to some
specification that involves random forests. Among the linear specifications, a machine learn-
ing approach that warrants particular attention is the bagging ensemble with a linear base
learner which consistently ranks in the top quartile of the model performance distribution
for both RMSE and MAE, demonstrating strong performance regardless of the information
set being used. Regarding the competing information sets, the results of the horse race
identify the quarterly-factor information set (D1F) as a particularly effective companion
set for numerous algorithms, as it appears frequently among the top-ranked specifications.
Similar conclusions emerge from the horse race based on the monthly out-of-sample evalua-
tion experiment, reinforcing the robustness of the top candidates identified in the standard
quarterly-frequency OOS evaluation, and verifying that the prevailing algorithms and in-
formation sets are also suitable for tracking GDP at high observation frequency. However,
one notable distinction between the two OOS experiments is that when GDP is assumed to
be monitored on a monthly basis, there is an increased representation of information sets
containing high-frequency panels (D2 and D3) in the upper quartile of both rankings, which
implies that using high-frequency predictors helps capture useful within-quarter signals early
in the quarter. Among the candidate models that deserve special attention, given its robust
success (both across horizons and error measures) as well as its fast and easy implementa-
tion, is the diffusion-index of |Stock and Watson (2002) estimated with the target-relevant
factor modification of Bai and Ngj (2008)). Specifically, the target-ARDI containing the first
2 principal components extracted from the quarterly panel and using the BIC for selecting
the optimal lag-orders, is consistently found among the top performers. Nevertheless, it
is never found to have the best performance, neither when considering the 5-horizon av-
erage performance, nor the individual horizons’ performances. Furthermore, these results
suggest that doing preselection ahead of factor extraction is almost clearly the preferred
choice when forming diffusion indices for the purposes of nowcasting and forecasting using
standard factor-augmented autoregressions. This finding might be suggestive of a possible
direction towards a fruitful modification of the least-squares factor-boosting algorithm that
could further increase its already strong performance.

Regarding further directions for future work, past studies have demonstrated that gen-
erating forecasts at lower levels of aggregation, by setting the target variable to be each of
the demand- or supply-side components of GDP and subsequently aggregating the forecasts

for these subcomponents, can yield promising results.[z__g] For instance, |Foroni and Marcellino

26GDP can be decomposed into subcomponents derived either from the supply- or the demand-side.
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(2014)) using a large unbalanced mixed-frequency dataset for the Euro area, show that there
can be significant accuracy gains from separately nowcasting each supply-side GDP com-
ponent using factor-augmented MIDAS (F-MIDAS) regressions and then aggregating the
predictions, compared to directly using GDP growth as the dependent variable. Depending
on the month within the quarter the nowcast is generated, they report MSE reductions of
up to 11.7% in predicting EA GDP growth rates. Building on these findings, future studies
can explore predicting GDP indirectly by aggregating forecasts derived from modeling the
individual production or expenditure side components using ML methodologies.

This study contributes to the expanding field of developing machine learning models
aimed at enhancing macroeconomic monitoring. The insights gained from the analysis of the
components and the algorithms that constitute the successful candidates, provide directions
towards building improved ML-based models for nowcasting and forecasting macroeconomic
indicators in data-rich environments, taking into account the plethora of indicators that are

available at different sampling frequencies.
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A Legendre Polynomials

To illustrate the flexibility of Legendre polynomials in approximating different lag structures,
Figure [5] shows the various sets of weights generated by the four weight functions resulting
when the polynomial degree is set to 3. Assuming we are aggregating the first 12 lags of a
monthly covariate, each set of weights is composed of 12 values, one for each lagged term.
The horizontal axis represents the 12 lags, with the leftmost corresponding to the most
recent, while the vertical axis indicates the weight assigned to each lag, under polynomials
of different orders. As shown in the figure, employing a dictionary composed of Legendre
polynomials allows for a variety of weighting schemes, including linear, downward sloping,
and hump-shaped forms, among others. Note that, although the weights for the order-1
polynomial appear to imply an amplifying (rather than a decaying) effect over time of the
predictor on the target variable, since the generated sequence of weights is antisymmetric
(i.e., each pair of weights on either side of the central point being equal in magnitude but
opposite in sign), it enables the linear weighting scheme to capture equally both possibilities
of either an increasing or a diminishing influence of the predictor on the target variable
over time. Finally, it is worth noting that the first Legendre polynomial, corresponding to
degree zero, represents the constant function, which implies a uniform weighting scheme,
effectively averaging the lags using flat aggregation, similar to the approach proposed for
constructing information set D1. However, a key difference between the two methods is
in the observations included in the averaging process. Whereas in D1 we aggregate the
three monthly observations within each quarter, in D3 each observation aggregates a full
year of lags along with any available leads. For predictors with no leading observations,
this method yields quarterly observations that correspond to the annual (rather than the
quarterly) average.

B Temporal Stability and Sparsity in the Target-Predictors
Relationship

To get a sense of the relevance of the different predictors across time, and to gain insight into
the degree of sparsity between different models and under alternative transformations, this
section presents the sparsity pattern plots for two selected algorithms—hard-thresholding
and sparse-group LASSO—across the three information sets. The selection of these two algo-
rithms is motivated by the following reasons. First, models incorporating a pre-screening step
to define targeted-predictors, consistently rank among the top quartile of best-performing
models. Thus, the underlying dynamics driving this outcome merit further attention. Sec-
ond, the sparse-group LASSO’s enhanced variable selection capabilities, that are due to its
capacity to recognize that covariates at different lags are temporally related, which is achieved
by grouping lags and inducing sparsity both between and within the defined groups, make
it an appropriate reference model for comparison. The plots are based on the 220 vintages
from the out-of-sample evaluation conducted at the monthly periodicity, and present the
variables selected by the models to produce the nowcasts (n = 0). Recall that, depending
on the specific monthly vintage used, the nowcasts correspond to either h = 2 or h = 1.
Legendre-aggregated covariates from different polynomial orders (in D3) and lags of different
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Figure 5: Legendre Polynomials for 12 Lags and Degrees 0 to 3

59



variables (in D1 and D2) have been aggregated across predictors, so that each entry on the
horizontal axis in this section’s figures, represents one of the 257 variables that comprise the
three information sets, including one entry for each PCA-factor and one for all autoregressive
lags. To see how the various economic categories are represented over time, indicators are
further grouped together using the categories defined in Section [4]

Figures [6] to[§] present the covariates selected by applying the hard-thresholding algorithm
on information sets D1, D2 and D3, while [9] shows the features selected by the sg-LASSO-
MIDAS model, which is only trained using the information set based on the Legendre poly-
nomials, as per the recommendation of Babii et al| (2022). Hard-thresholding is used in
this study to perform the preselection step in three instances: (1) in the Target CSR model,
(2) in the Linear Bagging model, and (3) to select the set of predictors used to construct
the factors for the Target ARDI model. However, the specific screening settings vary across
each of these models. As such, the sparsity patters plotted here are obtained by setting the
absolute t-statistic threshold at 1.96, which roughly corresponds to the critical value at the
5% level of significance, against a two-sided alternative that the variable under investigation
is significant.

Note that the sparsity pattern plot for the variable selection conducted on D1 contains 8
entries in the ‘Factors’ category, whereas plots for D2 and D3 contain twice as many entries,
as two sets of factors are created for the mixed-frequency information sets—one from the
monthly and one from the quarterly panel. Specifically, the first eight Factor-related columns
(in brown) correspond to the monthly factors, while the subsequent eight represent the
components extracted from the quarterly panel. Furthermore, plots for the hard-thresholding
algorithm do not contain an entry for autoregressive lags, because these are added as control
variables and are therefore always included among the (potential) predictorsE]

A visual inspection of the four figures indicates considerable variability in the persistence
of individual predictors’ relevance across vintages, regardless of the preselection algorithm or
the particular information set over which preselection is applied. This temporal instability
in the sparsity patterns highlights the evolving nature of target-predictor relationships and is
suggestive of the importance of incorporating alternative types of thresholding preselection
strategies in data-rich settings, particularly when employing forecasting methods that are not
inherently sparsity-inducing. As such, introducing a preliminary step that identifies target-
relevant predictors as part of the forecasting framework can enhance predictive accuracy by
increasing robustness to structural changes and enabling models to adapt to evolving eco-
nomic conditions. Examining the sparsity patterns obtained by applying hard-thresholding
preselection on the three information sets (Figures [6§g), the quarterly aggregated informa-
tion set D1 appears to be the sparsest, followed by D3, in which each predictor is temporally
aggregated using a variety of weighting schemes obtained by Legendre polynomials of differ-
ent orders. A few interesting observations arise from the direct comparison of the patterns
depicted in Figures [6] and [§| Since all three information sets are comprised of the same 257
predictors, the only difference between the covariates involved in the preselection exercises
presented in the two figures lies in the underlying weighting schemes used to aggregate lagged
values of each predictor (along with the number of lags involved in the aggregation) There-

27 As indicated in the previous sections, autoregressive lags enter as control variables both in the first-stage
regressions of the screening step, and in the underlying base learners of the CSR and Bagging ensembles.
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fore, the differences in the temporal stability of the indicators observed across the two figures
highlight the fact that different a priori choices for the weights used to aggregate the lags,
can substantially affect the underlying target-predictor correlations. Interestingly, certain
groups of indicators, most notably those related to 'Labor’, "Prices’, and 'Interest rates’, ex-
hibit markedly sparser patterns when looking at the selected predictors from D1 compared to
D3. Since the majority of series in these three categories are sampled at a higher frequency;,
this observation might be indicative of the fact that alternative dynamic structures (e.g., de-
caying, hump-shaped, or oscillatory) captured by one or multiple of the various lag-weighting
functions included in the Legendre dictionary, may provide a more suitable approximation of
the target-predictor relationship, as opposed to the flat distributed-lag structure imposed by
the uniform weighting scheme used in D1 to temporally aggregate monthly predictors (Fig-
ure @ Another noteworthy observation across the first three figures, that all depict sparsity
patterns under hard-thresholding, and is most noticeable in information set D1, is that the
series in the ‘Interest rates’ category become considerably sparser beginning in late 2014.
The observed insignificance in the bulk of interest rate and spread series after 2014 coincides
chronologically with the end of the zero-interest rate policy followed by the Federal Reserve
and other central banks beginning in 2010 in response to the 2007-2009 Global Financial Cri-
sis. As the U.S. economy began to exit the zero lower bound in 2015, long-term correlations
with GDP growth appear to have weakened, giving rise to the sparsity patterns observed in
the figure. Nevertheless, similarly to the argument made earlier, comparing the patterns ob-
tained by applying hard-thresholding on D1 and D3, the relatively denser post-2014 patterns
observed for interest rates in Figure [§| suggest that it is possible that correlations could still
be present, but that a shift in the underlying dynamic relationships could have occurred,
which could be better captured by one or multiple alternative lag structures approximated
through the different weighting functions included in the Legendre dictionary[| Finally,
overall, the hard-thresholding algorithm, even when applied on information set D1, yields
considerably less sparse selections than those implied by the feature-selection mechanism of
the sg-LLASSO, which becomes apparent by observing Figure [9] The latter not only selects
fewer variables at each vintage, but also the number of series across all vintages that are
never selected, is significantly larger. This difference can be attributed to the fact that the
variable selection mechanism of the sg-LASSO takes into account the correlations between
predictors which is something lacking from hard-thresholding techniques, and is increasingly
important given the highly correlated nature of macroeconomic data. Another important

28 As mentioned in the beginning of this Appendix, in Figures [§| and E] when the underlying variable-
(pre)selection algorithm selects any of the alternative Legendre-aggregated versions corresponding to the
different polynomial orders (in D3), the graphs mark one entry on the horizonal axis for that particular
covariate. Therefore, the current configuration of the graphs does not allow us to see the particular weighting
schemes that were relevant for each predictor and any given vintage. An interesting extension of the analysis
presented in this Appendix would be to produce a disaggregated version of Figure [§| showing sparsity pattern
for information set D3 based on hard-thresholding, but instead of aggregating the selection of the alternative
Legendre-aggregated versions of each covariate, presenting 4 disaggregated graphs, one for each weight
function resulting when the polynomial degree in the Legendre dictionary is set to 3. Such an analysis
would produce insights on the relevance of alternative temporal-aggregation schemes for different categories
of predictors and would allow us to investigate whether the shape of the temporal transmission mechanism
between the target and different predictors has shifted across time. I reserve this more detailed investigation
for future work.
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consideration when evaluating target-predictor relationships via hard-thresholding preselec-
tion is that, while the graphs illustrate the relevance of each potential predictor for the target
variable, they are not informative of the underlying relative importance of these predictors,
as they only depict the frequency with which the algorithm select each variable, without
capturing the magnitude of the associated coefficients.
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